...
首页> 外文期刊>Bulletin of the American Physical Society >APS -Joint Fall 2017 Meeting of the Texas Section of the APS, Texas Section of the AAPT, and Zone 13 of the Society of Physics Students- Event - Maximum Entropy Methods in Survival Analysis
【24h】

APS -Joint Fall 2017 Meeting of the Texas Section of the APS, Texas Section of the AAPT, and Zone 13 of the Society of Physics Students- Event - Maximum Entropy Methods in Survival Analysis

机译:APS-APS得克萨斯分校,AAPT得克萨斯分校和物理学生学会第13区联合2017年秋季会议-事件-生存分析中的最大熵方法

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The fundamental problem of the traditional Biostatistics is to calculate the probability that an experimental result is due entirely to chance (the null hypothesis). When that probability is sufficiently low (typically, below 5 {%}) it can be assumed that an underlying "effect" might explain the results (the alternate hypothesis), but in general the "effect" is not quantitatively determined. For example, in Survival Analysis there are a number of algorithms that can determine whether two groups have statistically significant different survivals (time-to-event distributions). However, the difference between the median survival times of the groups, which is typically reported, is not always a good estimator of the quantitative survival differences between groups. Even more important, when the populations of the groups are very small, there is almost impossible to obtain statistically significant differences between them, regardless of how strong the underlying "effect" might be.We suggest an alternative approach, in which we calculate the most likely "effect" that explains the given experimental outcome, namely the "effect" that maximizes the entropy of the result. It will be shown (via Monte-Carlo simulations) not only that such an estimator is in a very good agreement with the average survival time difference between the two groups, but also that it remains reasonably accurate even at low sample numbers, for which traditional Biostatistical methods suggest that the null hypothesis cannot be rejected.
机译:传统生物统计学的基本问题是计算实验结果完全归因于偶然性的可能性(无效假设)。当该概率足够低时(通常低于5 {%}),可以假定潜在的“效应”可以解释结果(替代假设),但是通常“效应”不是定量确定的。例如,在“生存分析”中,有许多算法可以确定两组是否具有统计上显着不同的生存(事件发生时间分布)。但是,通常报道的各组中位生存时间之间的差异并不总是可以很好地估算各组之间的定量生存差异。更重要的是,当这些群体的人口非常少时,无论潜在的“效应”有多强,几乎都不可能获得统计学上的显着差异。我们建议使用另一种方法,在此方法中,可能会解释给定实验结果的“效果”,即使结果的熵最大化的“效果”。 (通过蒙特卡洛模拟)将证明,这种估计不仅与两组之间的平均生存时间差非常吻合,而且即使在较低的样本数量下,它仍然保持相当准确的精度。生物统计学方法表明,原假设不能被拒绝。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号