首页> 外文期刊>Bulletin of the American Physical Society >APS -Joint Fall 2017 Meeting of the Texas Section of the APS, Texas Section of the AAPT, and Zone 13 of the Society of Physics Students- Event - Calculation of distributio of Temperature and potential on RRAM using finite element method
【24h】

APS -Joint Fall 2017 Meeting of the Texas Section of the APS, Texas Section of the AAPT, and Zone 13 of the Society of Physics Students- Event - Calculation of distributio of Temperature and potential on RRAM using finite element method

机译:APS-APS得克萨斯分校,AAPT得克萨斯分校和物理学生学会第13区联合2017年秋季会议-事件-使用有限元方法计算RRAM上的温度和电势分布

获取原文
           

摘要

Finite element calculations are being performed on resistive RAM (RRAM) devices to determine theelectric potential and temperature distribution across the wafer. RRAM is a non-volatile memorytechnology that is currently being considered to replace Flash memory beyond 14 nm technology node.The calculations are performed using Comsol Multiphysics using the electric current and heat transfer insolids features. We used three Multiphysics nodes, i.e. Electromagnetic heat source, the boundary heatsource and temperature coupling. The device was built from a plane geometry of substrate (fused quartz),bottom electrode (Pt), oxide (NiO), and top electrode (Pt) and then extruded each in the z-direction. Aphysics controlled normal mess was used for the calculations consisting of tetrahedral elements.Calculations were performed for a high and low resistive memory layer. In both cases the potential varieslinearly along the electrodes. For the high resistive device, the temperature is highest in the center. Forthe low resistive device Joule heating mainly takes place along the electrodes and the temperature variesmuch less across the wafer. This work was supported by a DOD grant (HBCU/MI grant W911NF-15-1-0394).
机译:正在电阻RAM(RRAM)器件上进行有限元计算,以确定晶片上的电势和温度分布。 RRAM是一种非易失性存储技术,目前正在考虑取代14 nm技术节点以外的闪存。计算是使用Comsol Multiphysics的电流和传热固体功能进行的。我们使用了三个多物理场节点,即电磁热源,边界热源和温度耦合。该设备由衬底(熔融石英),底部电极(Pt),氧化物(NiO)和顶部电极(Pt)的平面几何构筑而成,然后分别沿z方向挤压。使用由物理学控制的法线混乱进行四面体元素组成的计算,并对高阻存储层和低阻存储层进行了计算。在两种情况下,电势都沿着电极线性变化。对于高阻器件,中心温度最高。对于低电阻器件,焦耳热主要发生在电极上,整个晶片的温度变化要小得多。这项工作得到了DOD赠款(HBCU / MI赠款W911NF-15-1-0394)的支持。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号