...
首页> 外文期刊>Bulletin of the American Physical Society >APS -APS March Meeting 2017 - Event - Unleashing elastic energy: dynamics of energy release in rubber bands and impulsive biological systems
【24h】

APS -APS March Meeting 2017 - Event - Unleashing elastic energy: dynamics of energy release in rubber bands and impulsive biological systems

机译:APS -APS 2017年3月会议-活动-释放弹性能:橡皮筋和脉冲生物系统中能量释放的动力学

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Impulsive biological systems - which include mantis shrimp, trap-jaw ants, and venus fly traps -- can reach high speeds by using elastic elements to store and rapidly release energy. The material behavior and shape changes critical to achieving rapid energy release in these systems are largely unknown due to limitations of materials testing instruments operating at high speed and large displacement. In this work, we perform fundamental, proof-of-concept measurements on the tensile retraction of elastomers. Using high speed imaging, the kinematics of retraction are measured for elastomers with varying mechanical properties and geometry. Based on the kinematics, the rate of energy dissipation in the material is determined as a function of strain and strain-rate, along with a scaling relation which describes the dependence of maximum velocity on material properties. Understanding this scaling relation along with the material failure limits of the elastomer allows the prediction of material properties required for optimal performance. We demonstrate this concept experimentally by optimizing for maximum velocity in our synthetic model system, and achieve retraction velocities that exceed those in biological impulsive systems. This model system provides a foundation for future work connecting continuum performance to molecular architecture in impulsive systems.
机译:脉冲生物系统-包括螳螂虾,下颚蚂蚁和维纳斯捕蝇器-可以通过使用弹性元件来存储并快速释放能量来达到高速。由于在高速和大位移下运行的材料测试仪器的局限性,对于在这些系统中实现快速释放能量至关重要的材料性能和形状变化在很大程度上尚不清楚。在这项工作中,我们对弹性体的拉伸收缩率进行了基本的概念验证测量。使用高速成像技术,可以测量具有不同机械性能和几何形状的弹性体的回缩运动学。基于运动学,确定材料中能量的耗散率与应变和应变率的函数,以及描述最大速度对材料特性的依存关系的比例关系。了解这种比例关系以及弹性体的材料破坏极限可以预测最佳性能所需的材料性能。我们通过优化合成模型系统中的最大速度,实验性地证明了这一概念,并获得了超过生物冲动系统中的收缩速度。该模型系统为将来的工作提供了基础,该工作将连续性性能与脉冲系统中的分子体系结构联系起来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号