...
首页> 外文期刊>Journal of vision >Computational mechanisms for identifying the navigational affordances of scenes in a deep convolutional neural network
【24h】

Computational mechanisms for identifying the navigational affordances of scenes in a deep convolutional neural network

机译:识别深度卷积神经网络中场景的导航能力的计算机制

获取原文
           

摘要

A central component of spatial navigation is determining where one can and cannot go in the immediate environment. For example, in indoor environments, walls limit one's potential routes, while passageways facilitate movement. In a recent set of fMRI experiments, we found evidence suggesting that the human visual system solves this problem by automatically identifying the navigational affordances of the local scene. Specifically, we found that the occipital place area (OPA), a scene-selective region near the transverse occipital sulcus, appears to automatically encode the navigational layout of visual scenes, even when subjects are not engaged in a navigational task. Given the apparent automaticity of this process, we predicted that affordance identification could be rapidly achieved through a series of purely feedforward computations performed on retinal inputs. To test this prediction and to explore other computational properties of affordance identification, we examined the representational content in a deep convolutional neural network (CNN) that was trained on the Places database for scene categorization but has also been shown to contain information relating to the coarse spatial layout of scenes. Using representational similarity analysis (RSA), we found that the CNN contained information relating to both the neural responses of the OPA and the navigational affordances of scenes, most prominently in the mid-level layers of the CNN. We then performed a series of analyses to isolate the visual inputs that are critical for identifying navigational affordances in the CNN. These analyses revealed a strong reliance on visual features at high-spatial frequencies and cardinal orientations, both of which have previously been identified as low-level stimulus preferences of scene-selective visual cortex. Together, these findings demonstrate the feasibility of computing navigational affordances in a feedforward sweep through a hierarchical system, and they highlight the specific visual inputs on which these computations rely.
机译:空间导航的中心组成部分是确定人们在近期环境中可以或不能去的地方。例如,在室内环境中,墙壁会限制人的潜在路线,而通道则有助于移动。在最近的一组功能磁共振成像实验中,我们发现了证据,表明人类视觉系统通过自动识别本地场景的导航能力解决了这个问题。具体而言,我们发现,枕骨横卧沟附近的场景选择区域,枕骨位置区域(OPA),似乎自动编码了视觉场景的导航布局,即使受试者没有从事导航任务也是如此。考虑到该过程的明显自动化,我们预测可以通过对视网膜输入执行的一系列纯前馈计算来快速实现能力识别。为了测试此预测并探索可负担性识别的其他计算属性,我们检查了深度卷积神经网络(CNN)中的表示内容,该深度卷积神经在Places数据库中进行了场景分类训练,但还显示出包含与粗略相关的信息场景的空间布局。使用表示相似性分析(RSA),我们发现CNN包含与OPA的神经反应和场景的导航能力相关的信息,最主要的是在CNN的中层。然后,我们进行了一系列分析,以隔离对于确定CNN中的导航功能至关重要的视觉输入。这些分析表明,在高空间频率和主方向上强烈依赖视觉特征,而这两种特征先前都被确定为场景选择性视觉皮层的低水平刺激偏好。这些发现共同证明了通过分层系统在前馈扫描中计算导航能力的可行性,并且它们突出了这些计算所依赖的特定视觉输入。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号