首页> 外文期刊>Journal of vision >Motion adaptation reveals that the motion vector is represented in multiple coordinate frames
【24h】

Motion adaptation reveals that the motion vector is represented in multiple coordinate frames

机译:运动自适应显示运动矢量在多个坐标系中表示

获取原文
           

摘要

Abstract Abstract: Abstract?? Accurately perceiving the velocity of an object during smooth pursuit is a complex challenge: although the object is moving in the world, it is almost still on the retina. Yet we can perceive the veridical motion of a visual stimulus in such conditions, suggesting a nonretinal representation of the motion vector. To explore this issue, we studied the frames of representation of the motion vector by evoking the well known motion aftereffect during smooth-pursuit eye movements (SPEM). In the retinotopic configuration, due to an accompanying smooth pursuit, a stationary adapting random-dot stimulus was actually moving on the retina. Motion adaptation could therefore only result from motion in retinal coordinates. In contrast, in the spatiotopic configuration, the adapting stimulus moved on the screen but was practically stationary on the retina due to a matched SPEM. Hence, adaptation here would suggest a representation of the motion vector in spatiotopic coordinates. We found that exposure to spatiotopic motion led to significant adaptation. Moreover, the degree of adaptation in that condition was greater than the adaptation induced by viewing a random-dot stimulus that moved only on the retina. Finally, pursuit of the same target, without a random-dot array background, yielded no adaptation. Thus, in our experimental conditions, adaptation is not induced by the SPEM per se. Our results suggest that motion computation is likely to occur in parallel in two distinct representations: a low-level, retinal-motion dependent mechanism and a high-level representation, in which the veridical motion is computed through integration of information from other sources.
机译:摘要摘要:摘要?在平稳跟踪过程中准确感知物体的速度是一个复杂的挑战:尽管物体在世界上移动,但几乎仍在视网膜上。然而,我们可以在这种情况下感知视觉刺激的垂直运动,提示运动矢量的非视网膜表示。为了探讨这个问题,我们通过唤起平滑追踪眼动(SPEM)期间众所周知的运动后效应来研究运动矢量的表示框架。在视黄醛构型下,由于伴随着平稳的追赶,静止的适应性随机点刺激实际上正在视网膜上移动。因此,运动适应只能由视网膜坐标系中的运动引起。相反,在时空构型中,适应性刺激在屏幕上移动,但由于匹配的SPEM,实际上在视网膜上是静止的。因此,这里的适应将建议运动矢量在空间坐标中的表示。我们发现暴露于时空运动会导致明显的适应。此外,在这种情况下的适应程度大于通过观察仅在视网膜上移动的随机点刺激而引起的适应。最后,在没有随机点阵列背景的情况下,追求相同的目标不会产生适应性。因此,在我们的实验条件下,SPEM本身不会引起适应。我们的结果表明,运动计算可能以两种不同的表示形式并行发生:一种低级,依赖视网膜运动的机制和一种高级表示形式,其中通过整合来自其他来源的信息来计算垂直运动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号