...
首页> 外文期刊>Journal of vision >Double dissociation between the extrastriate body area and the posterior superior temporal sulcus during biological motion perception: converging evidence from TMS and fMRI
【24h】

Double dissociation between the extrastriate body area and the posterior superior temporal sulcus during biological motion perception: converging evidence from TMS and fMRI

机译:生物运动感知过程中,外体区域与颞上后沟之间的双重分离:来自TMS和fMRI的证据融合

获取原文
           

摘要

Our brains engage numerous regions when exposed to biological motion, with the posterior superior temporal sulcus (pSTS) being the primary locus. However, most of the supporting evidence stems from studies that contrasted intact with position-scrambled point-light animations. This approach leaves unclear the exact functional role of not only this region, but also of other co-activated regions, including hMT+ and the extrastriate body area (EBA). Here, we set out to determine the specific roles of pSTS and EBA during biological motion perception, focusing on walker orientation and walking direction. To obtain converging evidence, we conducted separate TMS and fMRI experiments within the same subjects (N=12). Two separate tasks were used in the TMS study: walker orientation and walking direction. In the orientation task, subjects identified the facing direction of a "point-light" walker (left vs. right). In the direction task, subjects identified walking direction (forward vs. backward). Task performance was compared before and after applying repetitive offline TMS (1Hz) over EBA and pSTS (based on fMRI-guided stereotaxy). In the fMRI study, EBA and pSTS were mapped in separate scans using standard localizers. Subsequently, runs with point-light walkers (2 facing orientations * 2 walking directions) were subjected to Multi-Voxel Pattern Analysis, determining the amount of static (orientation) and dynamic (direction) information present within EBA and pSTS. Both TMS and MVPA revealed a strong double dissociation between inferred functions of EBA and pSTS. Disrupting EBA impaired performance on the walker orientation task, while leaving walking direction performance intact. In contrast, disruption of pSTS processing resulted in the opposite effect (p.001). Similarly, EBA BOLD response revealed significant walker orientation information and no walking direction information, while (again) pSTS BOLD response displayed the opposite pattern (p.005). We provide converging and causative evidence that dissociates EBA (static body processing) from pSTS (dynamic body sequence processing) during action perception.
机译:当暴露于生物运动中时,我们的大脑会参与多个区域,其中后颞上颞沟(pSTS)是主要部位。但是,大多数支持证据来自与位置混乱的点光源动画完整对比的研究。这种方法不仅不清楚该区域的确切功能作用,而且还不清楚其他共同激活的区域,包括hMT +和超生物体区域(EBA)的确切功能。在这里,我们着眼于步行者的方向和步行方向,来确定pSTS和EBA在生物运动感知过程中的具体作用。为了获得越来越多的证据,我们在同一受试者(N = 12)中分别进行了TMS和fMRI实验。在TMS研究中使用了两个单独的任务:步行者定向和步行方向。在定向任务中,受试者识别出“点光”助行器的朝向(左对右)。在指导任务中,受试者确定了行走方向(向前与向后)。比较了在EBA和pSTS上应用重复的离线TMS(1Hz)之前和之后的任务性能(基于fMRI引导的立体定位)。在fMRI研究中,使用标准定位器在单独的扫描中绘制了EBA和pSTS。随后,对具有点光源的步行者(2个朝向* 2个步行方向)的跑步进行了多体素模式分析,以确定EBA和pSTS中存在的静态(方向)和动态(方向)信息的数量。 TMS和MVPA都揭示了EBA和pSTS的推断功能之间的强烈双重分离。破坏EBA会损害步行者定向任务的性能,同时保持步行定向性能不变。相反,中断pSTS处理会产生相反的效果(p <.001)。同样,EBA BOLD响应显示出重要的步行者定向信息,而没有步行方向信息,而(再次)pSTS BOLD响应显示出相反的模式(p <.005)。我们提供了在行动感知过程中将EBA(静态身体处理)与pSTS(动态身体序列处理)分离的收敛性和成因证据。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号