...
首页> 外文期刊>Journal of cell biology >Recycling of Golgi-resident Glycosyltransferases through the ER Reveals a Novel Pathway and Provides an Explanation for Nocodazole-induced Golgi Scattering
【24h】

Recycling of Golgi-resident Glycosyltransferases through the ER Reveals a Novel Pathway and Provides an Explanation for Nocodazole-induced Golgi Scattering

机译:通过ER的高尔基体糖基转移酶的回收揭示了一种新的途径,并为诺考达唑诱导的高尔基体散射提供了解释。

获取原文
   

获取外文期刊封面封底 >>

       

摘要

During microtubule depolymerization, the central, juxtanuclear Golgi apparatus scatters to multiple peripheral sites. We have tested here whether such scattering is due to a fragmentation process and subsequent outward tracking of Golgi units or if peripheral Golgi elements reform through a novel recycling pathway. To mark the Golgi in HeLa cells, we stably expressed the Golgi stack enzyme N -acetylgalactosaminyltransferase-2 (GalNAc-T2) fused to the green fluorescent protein (GFP) or to an 11–amino acid epitope, VSV-G (VSV), and the trans /TGN enzyme β1,4-galactosyltransferase (GalT) fused to GFP. After nocodazole addition, time-lapse microscopy of GalNAc-T2–GFP and GalT–GFP revealed that scattered Golgi elements appeared abruptly and that no Golgi fragments tracked outward from the compact, juxtanuclear Golgi complex. Once formed, the scattered structures were relatively stable in fluorescence intensity for tens of minutes. During the entire process of dispersal, immunogold labeling for GalNAc-T2–VSV and GalT showed that these were continuously concentrated over stacked Golgi cisternae and tubulovesicular Golgi structures similar to untreated cells, suggesting that polarized Golgi stacks reform rapidly at scattered sites. In fluorescence recovery after photobleaching over a narrow (FRAP) or wide area (FRAP-W) experiments, peripheral Golgi stacks continuously exchanged resident proteins with each other through what appeared to be an ER intermediate. That Golgi enzymes cycle through the ER was confirmed by microinjecting the dominant-negative mutant of Sar1 (Sar1pdn) blocking ER export. Sar1pdn was either microinjected into untreated or nocodazole-treated cells in the presence of protein synthesis inhibitors. In both cases, this caused a gradual accumulation of GalNAc-T2–VSV in the ER. Few to no peripheral Golgi elements were seen in the nocodazole-treated cells microinjected with Sar1pdn. In conclusion, we have shown that Golgi-resident glycosylation enzymes recycle through the ER and that this novel pathway is the likely explanation for the nocodazole-induced Golgi scattering observed in interphase cells.
机译:在微管解聚过程中,中央的近核高尔基体散射到多个外围部位。我们在这里测试了这种散射是否是由于碎片过程和随后的高尔基体向外追踪引起的,还是外围的高尔基体元素通过新的回收途径而发生了重组。为了标记HeLa细胞中的高尔基体,我们稳定表达了高尔基体堆积酶N-乙酰半乳糖胺基转移酶2(GalNAc-T2)与绿色荧光蛋白(GFP)或与11个氨基酸的抗原决定簇VSV-G(VSV)融合,以及与GFP融合的反式/ TGN酶β1,4-半乳糖基转移酶(GalT)。加入诺考达唑后,GalNAc-T2-GFP和GalT-GFP的延时显微镜显示,散乱的高尔基体突然出现,并且没有高尔基体碎片从紧密的,近核的高尔基体中追踪出来。一旦形成,分散的结构在数十分钟内的荧光强度相对稳定。在整个扩散过程中,GalNAc-T2-VSV和GalT的免疫金标记表明它们连续浓缩在堆积的高尔基水箱和微管高尔基结构上,类似于未经处理的细胞,这表明极化的高尔基体堆栈在分散的位置迅速重新形成。在狭窄(FRAP)或广域(FRAP-W)实验中进行光漂白后的荧光恢复中,外围的高尔基体堆栈通过似乎是ER中间体的状态,彼此之间连续交换驻留蛋白。通过显微注射阻断ER出口的Sar1(Sar1pdn)显性负突变体,证实了高尔基酶在ER中循环。在蛋白质合成抑制剂的存在下,将Sar1pdn显微注射到未处理或经诺考达唑处理的细胞中。在这两种情况下,这都会导致ER中GalNAc-T2-VSV逐渐积累。在显微注射了Sar1pdn的诺考达唑处理的细胞中,几乎没有观察到外周高尔基元件。总之,我们已经表明,高尔基体驻留的糖基化酶通过ER循环,并且这种新途径是在相间细胞中观察到的诺考达唑诱导的高尔基体散射的可能解释。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号