...
首页> 外文期刊>The biochemical journal >Mitochondrial DNA density homeostasis accounts for a threshold effect in a cybrid model of a human mitochondrial disease
【24h】

Mitochondrial DNA density homeostasis accounts for a threshold effect in a cybrid model of a human mitochondrial disease

机译:线粒体DNA密度稳态在人类线粒体疾病的杂交模型中占阈值效应

获取原文

摘要

Mitochondrial dysfunction is involved in a wide array of devastating diseases, but the heterogeneity and complexity of the symptoms of these diseases challenges theoretical understanding of their causation. With the explosion of omics data, we have the unprecedented opportunity to gain deep understanding of the biochemical mechanisms of mitochondrial dysfunction. This goal raises the outstanding need to make these complex datasets interpretable. Quantitative modelling allows us to translate such datasets into intuition and suggest rational biomedical treatments. Taking an interdisciplinary approach, we use a recently published large-scale dataset and develop a descriptive and predictive mathematical model of progressive increase in mutant load of the MELAS 3243AG mtDNA mutation. The experimentally observed behaviour is surprisingly rich, but we find that our simple, biophysically motivated model intuitively accounts for this heterogeneity and yields a wealth of biological predictions. Our findings suggest that cells attempt to maintain wild-type mtDNA density through cell volume reduction, and thus power demand reduction, until a minimum cell volume is reached. Thereafter, cells toggle from demand reduction to supply increase, up-regulating energy production pathways. Our analysis provides further evidence for the physiological significance of mtDNA density and emphasizes the need for performing single-cell volume measurements jointly with mtDNA quantification. We propose novel experiments to verify the hypotheses made here to further develop our understanding of the threshold effect and connect with rational choices for mtDNA disease therapies.* CoRR, : co-location for redox regulation; ETC, : electron transport chain; MELAS, : mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes; OXPHOS, : oxidative phosphorylation; ROS, : reactive oxygen species; SOD, : superoxide dismutase
机译:线粒体功能障碍涉及多种毁灭性疾病,但是这些疾病症状的异质性和复杂性挑战了对其病因的理论理解。随着组学数据的爆炸式增长,我们有了前所未有的机会来深入了解线粒体功能障碍的生化机制。此目标提出了使这些复杂数据集可解释的迫切需求。定量建模使我们能够将此类数据集转化为直觉并提出合理的生物医学治疗方法。采用跨学科方法,我们使用了最近发布的大规模数据集,并开发了描述性和预测性数学模型,该模型逐步提高了MELAS 3243A> G mtDNA突变的突变量。实验观察到的行为令人惊讶地丰富,但是我们发现,我们简单的,出于生物物理动机的模型直观地解释了这种异质性,并产生了大量的生物学预测。我们的发现表明,细胞试图通过减少细胞体积来保持野生型mtDNA密度,从而降低功率需求,直到达到最小细胞体积为止。此后,电池从需求减少转换为供应增加,从而上调了能源生产途径。我们的分析为mtDNA密度的生理意义提供了进一步的证据,并强调需要与mtDNA定量一起进行单细胞体积测量。我们提出了新颖的实验来验证此处所作的假设,以进一步发展我们对阈值效应的理解,并与mtDNA疾病疗法的合理选择联系起来。 ETC ,:电子传输链; MELAS:线粒体脑病,乳酸性酸中毒和中风样发作; OXPHOS ,:氧化磷酸化; ROS:活性氧; SOD:超氧化物歧化酶

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号