...
首页> 外文期刊>The biochemical journal >Phospholipase activity on N-acyl phosphatidylethanolamines is critically dependent on the N-acyl chain length
【24h】

Phospholipase activity on N-acyl phosphatidylethanolamines is critically dependent on the N-acyl chain length

机译:对N-酰基磷脂酰乙醇胺的磷脂酶活性关键取决于N-酰基链长

获取原文

摘要

pWe have recently shown that an endogenous phospholipase Asub2/sub from bovine erythrocytes does not hydrolyse NAPEs (iN/i-acyl l-α-phosphatidylethanolamines), which accumulate remarkably in this system [Florin-Christensen, Suarez, Florin-Christensen, Wainszelbaum, Brown, McElwain and Palmer (2001) Proc. Natl. Acad. Sci. U.S.A. b98/b, 7736–7741]. Here we investigate the causes underlying this resistance. N-acylation of PE (l-α-phosphatidylethanolamine) results in alteration of charge, head-group volume and conformation, the last two features depending on the N-acyl chain length. To evaluate each effect separately, we synthesized NAPEs with selected N-acyl chain length. We found that phospholipase Asub2/sub has considerable activity against N-acetyl PE, but is poorly active against N-butanoyl PE and only marginally active against N-hexanoyl PE, whereas the activity is completely lost when N-hexadecanoyl PE is presented as a substrate. On the other hand, N-hexanoyl PE does not inhibit phospholipase Asub2/sub activity, suggesting that this substrate fails to enter the hydrophobic channel. Phospholipase C presents a similar, but less sharp pattern. Molecular dynamics simulations of the polar head group of selected NAPEs reveal a substantially increased conformational variability as the N-acyl chain grows. This larger conformational space represents an increased impairment limiting the access of these molecules to the active site. Our data indicate that, whereas a change in charge contributes to diminished activity, the most relevant effects come from steric hindrance related to the growth of the N-acyl chain./p
机译:>我们最近发现,来自牛红细胞的内源性磷脂酶A 2 不会水解NAPE(N i-酰基1-α-磷脂酰乙醇胺),NAPEs在此显着积累系统[弗洛林-克里斯滕森,苏亚雷斯,弗洛林-克里斯滕森,Wainszelbaum,布朗,麦克尔韦恩和帕尔默(2001年)。 Natl。学院科学美国 98 ,7736-7741]。在这里,我们调查了这种抵抗的根源。 PE(1-α-磷脂酰乙醇胺)的N-酰化导致电荷,头基体积和构象的改变,最后两个特征取决于N-酰基链长。为了分别评估每种效果,我们合成了具有选定N-酰基链长的NAPE。我们发现磷脂酶A 2 对N-乙酰基PE具有相当大的活​​性,但对N-丁酰基PE则活性较弱,而对N-己酰基PE的活性很小,而当N-十六烷酰基PE作为底物存在。另一方面,N-己酰基PE不抑制磷脂酶A 2 的活性,表明该底物不能进入疏水通道。磷脂酶C表现出相似但不那么清晰的模式。选定的NAPE的极性头基团的分子动力学模拟显示,随着N-酰基链的增长,构象变异性大大增加。较大的构象空间表示增加的损伤,限制了这些分子接近活性位点。我们的数据表明,尽管电荷变化会导致活性降低,但最相关的影响来自与N-酰基链增长相关的位阻。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号