...
首页> 外文期刊>The biochemical journal >Functional and molecular modelling studies of two hereditary fructose intolerance-causing mutations at arginine 303 in human liver aldolase
【24h】

Functional and molecular modelling studies of two hereditary fructose intolerance-causing mutations at arginine 303 in human liver aldolase

机译:人类肝醛缩酶中两个遗传性果糖不耐受性突变的精氨酸303的功能和分子模型研究

获取原文
           

摘要

pWe have identified a novel hereditary fructose intolerance mutation in the aldolase B gene (i.e. liver aldolase) that causes an arginine-to-glutamine substitution at residue 303 (Argsup303/sup → Gln). We previously described another mutation (Argsup303/sup → Trp) at the same residue. We have expressed the wild-type protein and the two mutated proteins and characterized their kinetic properties. The catalytic efficiency of protein Glnsup303/sup is approx. 1/100 that of the wild-type for substrates fructose 1,6-bisphosphate and fructose 1-phosphate. The Trpsup303/sup enzyme has a catalytic efficiency approx. 1/4800 that of the wild-type for fructose 1,6-bisphosphate; no activity was detected with fructose 1-phosphate. The mutation Argsup303/sup → Trp thus substitution impairs enzyme activity more than Argsup303/sup → Gln. Three-dimensional models of wild-type, Trpsup303/sup and Glnsup303/sup aldolase B generated by homology-modelling techniques suggest that, because of its larger size, tryptophan exerts a greater deranging effect than glutamine on the enzyme9s three-dimensional structure. Our results show that the Argsup303/sup → Gln substitution is a novel mutation causing hereditary fructose intolerance and provide a functional demonstration that Argsup303/sup, a conserved residue in all vertebrate aldolases, has a dominant role in substrate binding during enzyme catalysis./p
机译:>我们在醛缩酶B基因(即肝脏醛缩酶)中发现了一种新型的遗传性果糖不耐受突变,该突变会导致残基303(Arg 303 →Gln)的精氨酸变为谷氨酰胺取代。我们先前描述了在相同残基处的另一个突变(Arg 303 →Trp)。我们已经表达了野生型蛋白和两个突变的蛋白,并表征了它们的动力学特性。蛋白质Gln 303 的催化效率约为。底物1,6-双磷酸果糖和1-磷酸果糖的底物为野生型的1/100。 Trp 303 酶的催化效率约为1,6-二磷酸果糖为野生型的1/4800;用1-磷酸果糖未检测到活性。因此,突变Arg 303 →Trp比Arg 303 →Gln更能削弱酶的活性。同源建模技术生成的野生型Trp 303 和Gln 303 醛缩酶B的三维模型表明,色氨酸由于其较大的尺寸而具有更大的排列比谷氨酰胺对酶的三维结构有更大的作用。我们的结果表明,Arg 303 →Gln取代是一种导致遗传性果糖不耐性的新突变,并提供了功能证明,Arg 303 (所有脊椎动物醛缩酶中的保守残基)具有在酶催化过程中对底物结合起主要作用。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号