...
首页> 外文期刊>The biochemical journal >Effects of sepiapterin and 6-acetyldihydrohomopterin on the guanosine triphosphate cyclohydrolase I of mouse, rat and the fruit-fly Drosophila
【24h】

Effects of sepiapterin and 6-acetyldihydrohomopterin on the guanosine triphosphate cyclohydrolase I of mouse, rat and the fruit-fly Drosophila

机译:Sepaapterin和6-乙酰基二氢hom蝶呤对小鼠,大鼠和果蝇果蝇鸟苷三磷酸鸟苷环水解酶I的影响

获取原文

摘要

pThe regulation of GTP cyclohydrolase I would lead to the regulation of tetrahydrobiopterin, an important cofactor for synthesis of neurotransmitters. In an attempt to extend a previous finding [Bellahsene, Dhondt, & Farriaux (1984) Biochem. J. 217, 59-65] that GTP cyclohydrolase I of rat liver is inhibited by subnanomolar concentrations of reduced biopterin and sepiapterin, we found that this could not be verified with the enzyme from mouse liver, fruit-fly (Drosophila) heads or, indeed, from rat liver. It was shown, however, that 12 microM-sepiapterin inhibited mouse liver GTP cyclohydrolase I. Another compound, namely 6-acetyldihydrohomopterin, was also employed in the present study to explore its effect on enzymes that lead to its synthesis in Drosophila and for effects on mammalian systems; at 2-5 microM this compound was shown to stimulate one form of mouse liver GTP cyclohydrolase I and then to inhibit at higher concentrations (40 microM). Neither sepiapterin nor 6-acetyldihydrohomopterin caused any effect on the Drosophila head enzyme. On the other hand, the sigmoid GTP concentration curve for the Drosophila enzyme may indicate a regulatory characteristic of this enzyme. Another report, on the lower level of GTP cyclohydrolase I in mutant mouse liver [McDonald, Cotton, Jennings, Ledley, Woo & Bode (1988) J. Neurochem. 50, 655-657], was confirmed and extended. Instead of having 10% activity, we find that the hph-1 mouse mutant has less than 2% activity in the liver. These studies demonstrate that micromolar levels of reduced pterins may have regulatory effects on GTP cyclohydrolase I and that a mouse mutant is available that has low enough activity to be considered as a model for human atypical phenylketonuria./p
机译:> GTP环水解酶I的调节将导致四氢生物蝶呤的调节,这是合成神经递质的重要辅助因子。为了扩展先前的发现[Bellahsene,Dhondt,& Farriaux(1984)生物化学。 [J. 217,59-65],大鼠肝中的GTP环水解酶I受亚纳摩尔浓度的生物蝶呤和Sepiapterin还原抑制,我们发现无法用小鼠肝脏,果蝇(果蝇)头或确实是从大鼠肝脏中提取的然而,已显示出12 microM-sepapterin抑制小鼠肝脏GTP环水解酶I。本研究中还使用了另一种化合物,即6-乙酰基二氢hydro蝶呤,来研究其对导致其在果蝇中合成的酶的作用以及对果蝇的影响。哺乳动物系统;在2-5 microM下,该化合物可刺激一种形式的小鼠肝脏GTP环水解酶I,然后在较高浓度下(40 microM)抑制。 Sepaapterin和6-乙酰基二氢hydro蝶呤均未对果蝇头部酶产生任何影响。另一方面,果蝇酶的乙状结肠GTP浓度曲线可能表明该酶的调节特性。关于突变小鼠肝脏中GTP环水解酶I水平较低的另一种报道[麦当劳,棉花,詹宁斯,莱德利,胡和Bode(1988)J.Neurochem。 50,655-657],已得到确认并延长。而不是具有10%的活性,我们发现hph-1小鼠突变体在肝脏中的活性不足2%。这些研究表明,微摩尔水平的降低的蝶呤可能会对GTP环水解酶I产生调节作用,并且有一种小鼠突变体具有足够低的活性,可以被认为是人非典型苯丙酮尿症的模型。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号