...
首页> 外文期刊>The biochemical journal >The biosynthesis of triacylglycerols in microsomal preparations of developing cotyledons of sunflower (Helianthus annuus L.)
【24h】

The biosynthesis of triacylglycerols in microsomal preparations of developing cotyledons of sunflower (Helianthus annuus L.)

机译:三酰基甘油在向日葵(Helianthus annuus L.)子叶发育的微粒体制剂中的生物合成

获取原文
   

获取外文期刊封面封底 >>

       

摘要

pThe synthesis of triacylglycerols was investigated in microsomes (microsomal fractions) prepared from the developing cotyledons of sunflower (Helianthus annuus). Particular emphasis was placed on the mechanisms involved in controlling the C18- unsaturated-fatty-acid content of the oils. We have demonstrated that the microsomes were capable of: the transfer of oleate from acyl-CoA to position 2 of sn-phosphatidylcholine for its subsequent desaturation and the return of the polyunsaturated products to the acyl-CoA pool by further acyl exchange; the acylation of sn-glycerol 3-phosphate with acyl-CoA to yield phosphatidic acid, which was further utilized in diacyl- and tri-acylglycerol synthesis; and (3) the equilibrium of a diacylglycerol pool with phosphatidylcholine. The acyl exchange between acyl-CoA and position 2 of sn-phosphatidylcholine coupled to the equilibration of diacylglycerol and phosphatidylcholine brings about the continuous enrichment of the glycerol backbone with C18 polyunsaturated fatty acids for triacylglycerol production. Similar reactions were found to operate in another oilseed plant, safflower (Carthamus tinctorius L.). On the other hand, the microsomes of avocado (Persea americana) mesocarp, which synthesize triacylglycerol via the Kennedy [(1961) Fed. Proc. Fed. Am. Soc. Exp. Biol. 20, 934-940] pathway, were deficient in acyl exchange and the diacylglycerol in equilibrium phosphatidylcholine interconversion. The results provide a working model that helps to explain the relationship between C18- unsaturated-fatty-acid synthesis and triacylglycerol production in oilseeds./p
机译:在由向日葵(Helianthus annuus)发育的子叶制备的微粒体(微粒体级分)中研究了三酰基甘油的合成。特别强调控制油中C18-不饱和脂肪酸含量的机制。我们已经证明微粒体能够:将油酸酯从酰基-CoA转移到sn-磷脂酰胆碱的位置2,以使其随后去饱和,并通过进一步的酰基交换将多不饱和产物返回到酰基-CoA库中; Sn-甘油3-磷酸与酰基辅酶A的酰化反应生成磷脂酸,进一步用于二酰基和三酰基甘油的合成; (3)二酰基甘油池与磷脂酰胆碱的平衡。酰基-CoA与sn-磷脂酰胆碱的2位之间的酰基交换与二酰基甘油和磷脂酰胆碱的平衡偶联,使甘油主链连续富集C18多不饱和脂肪酸以生产三酰基甘油。发现另一种油料种子植物红花(Carthamus tinctorius L.)也有类似反应。另一方面,鳄梨(Persea americana)中果皮的微粒体,通过Kennedy [(1961)Fed。进程美联储上午。 Soc。经验生物学20,934-940]途径,在平衡磷脂酰胆碱相互转化中缺乏酰基交换和二酰基甘油。研究结果提供了一个工作模型,有助于解释油籽中C18-不饱和脂肪酸的合成与三酰基甘油产量之间的关系。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号