...
首页> 外文期刊>The Astrophysical journal >The Duration of Energy Deposition on Unresolved Flaring Loops in the Solar Corona
【24h】

The Duration of Energy Deposition on Unresolved Flaring Loops in the Solar Corona

机译:太阳日冕中未解析的燃烧环上的能量沉积持续时间

获取原文
           

摘要

Solar flares form and release energy across a large number of magnetic loops. The global parameters of flares, such as the total energy released, duration, physical size, etc., are routinely measured, and the hydrodynamics of a coronal loop subjected to intense heating have been extensively studied. It is not clear, however, how many loops comprise a flare, nor how the total energy is partitioned between them. In this work, we employ a hydrodynamic model to better understand the energy partition by synthesizing Si iv and Fe xxi line emission and comparing to observations of these lines with the Interface Region Imaging Spectrograph (IRIS). We find that the observed temporal evolution of the Doppler shifts holds important information on the heating duration. To demonstrate this, we first examine a single loop model, and find that the properties of chromospheric evaporation seen in Fe xxi can be reproduced by loops heated for long durations, while persistent redshifts seen in Si iv cannot be reproduced by any single loop model. We then examine a multithreaded model, assuming both a fixed heating duration on all loops and a distribution of heating durations. For a fixed heating duration, we find that durations of 100–200 s do a fair job of reproducing both the red- and blueshifts, while a distribution of durations, with a median of about 50–100 s, does a better job. Finally, we compare our simulations directly to observations of an M-class flare seen by IRIS, and find good agreement between the modeled and observed values given these constraints.
机译:太阳耀斑形成并释放大量电磁回路中的能量。常规测量火炬的全局参数,例如释放的总能量,持续时间,物理尺寸等,并且已对剧烈加热的日冕环的流体动力学进行了广泛研究。但是,尚不清楚有多少个回路构成闪光,也不清楚总能量如何在它们之间分配。在这项工作中,我们采用水动力模型,通过合成Si iv和Fe xxi线发射并通过界面区域成像光谱仪(IRIS)与这些线的观察结果进行比较,从而更好地理解能量分配。我们发现,观察到的多普勒频移的时间演变掌握了加热持续时间的重要信息。为了证明这一点,我们首先检查了一个单回路模型,发现在Fe xxi中看到的色球蒸发特性可以通过长时间加热的回路来再现,而在Si iv中看到的持续红移不能通过任何一个单回路模型来再现。然后,我们假设在所有回路上均具有固定的加热持续时间,并假设加热持续时间的分布,从而研究了多线程模型。对于固定的加热时间,我们发现100-200 s的持续时间可以很好地再现红移和蓝移,而平均时间为50-100 s的持续时间分布则更好。最后,我们将模拟结果直接与IRIS观测到的M级耀斑进行比较,并在给定这些约束的情况下,在模型值和观测值之间找到了很好的一致性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号