...
首页> 外文期刊>The Astrophysical journal >A Global Magnetohydrodynamic Simulation Study of Ultra-low-frequency Wave Activity in the Inner Magnetosphere: Corotating Interaction Region + Alfvénic Fluctuations
【24h】

A Global Magnetohydrodynamic Simulation Study of Ultra-low-frequency Wave Activity in the Inner Magnetosphere: Corotating Interaction Region + Alfvénic Fluctuations

机译:磁层内部超低频波活动的全球磁流体动力学模拟研究:同向相互作用区域+Alfénic涨落

获取原文

摘要

Using global magnetohydrodynamic (MHD) simulations, we investigate the role played by a complex solar structure composed of a corotating interaction region (CIR) followed by solar wind Alfvénic fluctuations on the magnetosphere's nightside, equatorial electric field oscillations in the ultra-low-frequency range. A series of numerical experiments are performed employing synthetic solar wind inputs resembling those of a real CIR+Alfvénic fluctuation event that reached Earth's magnetosphere on 2003 April 20. The following is found: (i) Radial electric field component fluctuations are excited via magnetopause boundary motions driven either by solar wind density variations characteristic of CIRs or by solar wind Alfvénic fluctuations with a given oscillation period. (ii) Azimuthal electric field component fluctuations nearer to Earth, that is, at radial distances R less than about 5R E ( Earth radius), are apparently not related to either of the two types of sinusoidal solar wind Alfvénic fluctuations used in this study featuring monochromatic frequencies of 0.833 mHz (20-minute period) and 1.666 mHz (10-minute period). Instead, these innermost azimuthal component fluctuations show enhanced activity when inner magnetosphere convection increases as a result of a southward turning of the interplanetary magnetic field component B z . (iii) Lastly, outermost (R??7 R E) azimuthal electric field oscillations weakly respond to monochromatic solar wind Alfvénic fluctuations by showing power spectral density peaks at both driving frequencies, but only near the flanks of the magnetopause, thus suggesting that such oscillations are being excited also owing to magnetopause boundary motions driven by solar wind Alfvénic fluctuations.
机译:使用全球磁流体动力学(MHD)模拟,我们研究了由同向相互作用区域(CIR),太阳风Alfvénic波动,磁层夜侧起伏,赤道电场在超低频范围内振荡构成的复杂太阳结构所起的作用。使用合成的太阳风输入进行了一系列数值实验,这些输入类似于2003年4月20日到达地球磁层的真实CIR +Alfvénic波动事件的输入。(i)径向磁场分量的波动是通过磁层顶边界运动激发的由CIR的太阳风密度变化或给定振荡周期的太阳风Alfvénic波动驱动。 (ii)更接近地球的方位角电场分量波动,即在径向距离R小于约5R E(地球半径)时,显然与本研究中使用的两种正弦太阳风Alfvénic波动都不相关单色频率为0.833 mHz(20分钟)和1.666 mHz(10分钟)。相反,当由于行星际磁场分量B z向南转向而导致内部磁层对流增加时,这些最里面的方位分量波动显示出增强的活动。 (iii)最后,最外面的(R ?? 7 RE)方位电场振荡通过在两个驱动频率上均显示出功率谱密度峰值,而仅在磁层顶的侧面附近,对单色太阳风Alfvénic脉动响应较弱。也是由于太阳风Alfvénic波动驱动的磁层顶边界运动而被激发。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号