首页> 外文期刊>The Astrophysical journal >DYNAMICAL ACCRETION OF PRIMORDIAL ATMOSPHERES AROUND PLANETS WITH MASSES BETWEEN 0.1 AND 5 M ⊕ IN THE HABITABLE ZONE
【24h】

DYNAMICAL ACCRETION OF PRIMORDIAL ATMOSPHERES AROUND PLANETS WITH MASSES BETWEEN 0.1 AND 5 M ⊕ IN THE HABITABLE ZONE

机译:宜居区周围质量在0.1和5 M PLA之间的行星周围的大气大气的动态增加

获取原文
           

摘要

In the early, disk-embedded phase of evolution of terrestrial planets, a protoplanetary core can accumulate gas from the circumstellar disk into a planetary envelope. In order to relate the accumulation and structure of this primordial atmosphere to the thermal evolution of the planetary core, we calculated atmosphere models characterized by the surface temperature of the core. We considered cores with masses between 0.1 and 5 M ⊕ situated in the habitable zone around a solar-like star. The time-dependent simulations in 1D-spherical symmetry include the hydrodynamics equations, gray radiative transport, and convective energy transport. Using an implicit time integration scheme, we can use large time steps and and thus efficiently cover evolutionary timescales. Our results show that planetary atmospheres, when considered with reference to a fixed core temperature, are not necessarily stable, and multiple solutions may exist for one core temperature. As the structure and properties of nebula-embedded planetary atmospheres are an inherently time-dependent problem, we calculated estimates for the amount of primordial atmosphere by simulating the accretion process of disk gas onto planetary cores and the subsequent evolution of the embedded atmospheres. The temperature of the planetary core is thereby determined from the computation of the internal energy budget of the core. For cores more massive than about one Earth mass, we obtain that a comparatively short duration of the disk-embedded phase (~105 years) is sufficient for the accumulation of significant amounts of hydrogen atmosphere that are unlikely to be removed by later atmospheric escape processes.
机译:在地球行星演化的磁盘早期阶段,原行星核可以将来自星际磁盘的气体积聚到行星包壳中。为了将此原始大气的累积和结构与行星核的热演化联系起来,我们计算了以核表面温度为特征的大气模型。我们考虑了质量在0.1到5 M⊕之间的核,它们位于太阳状恒星周围的宜居区域。一维球面对称的时变模拟包括流体动力学方程,灰色辐射输运和对流能量输运。使用隐式时间积分方案,我们可以使用较大的时间步长,从而有效地涵盖了演化时标。我们的结果表明,考虑到固定的核心温度,行星大气不一定稳定,并且对于一个核心温度可能存在多种解决方案。由于嵌入星云的行星大气的结构和性质是固有的时间依赖性问题,因此,我们通过模拟盘状气体在行星核上的积聚过程以及嵌入大气的后续演化,计算了原始大气量的估计值。行星芯的温度由此从芯的内部能量预算的计算中确定。对于比大约一个地球质量重的岩心,我们获得了相对较短的盘状埋藏期(约105年)足以积累大量的氢气氛,而这些氢气氛不可能被后来的大气逸出过程所除去。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号