首页> 外文期刊>The Astrophysical journal >Analysis of Meteoroid Ablation Based on Plasma Wind-tunnel Experiments, Surface Characterization, and Numerical Simulations
【24h】

Analysis of Meteoroid Ablation Based on Plasma Wind-tunnel Experiments, Surface Characterization, and Numerical Simulations

机译:基于等离子风洞实验,表面表征和数值模拟的类星体消融分析

获取原文
           

摘要

Meteoroids largely disintegrate during their entry into the atmosphere, contributing significantly to the input of cosmic material to Earth. Yet, their atmospheric entry is not well understood. Experimental studies on meteoroid material degradation in high-enthalpy facilities are scarce and when the material is recovered after testing, it rarely provides sufficient quantitative data for the validation of simulation tools. In this work, we investigate the thermo-chemical degradation mechanism of a meteorite in a high-enthalpy ground facility able to reproduce atmospheric entry conditions. A testing methodology involving measurement techniques previously used for the characterization of thermal protection systems for spacecraft is adapted for the investigation of ablation of alkali basalt (employed here as meteorite analog) and ordinary chondrite samples. Both materials are exposed to a cold-wall stagnation point heat flux of 1.2 MW m?2. Numerous local pockets that formed on the surface of the samples by the emergence of gas bubbles reveal the frothing phenomenon characteristic of material degradation. Time-resolved optical emission spectroscopy data of ablated species allow us to identify the main radiating atoms and ions of potassium, calcium, magnesium, and iron. Surface temperature measurements provide maximum values of 2280 K for the basalt and 2360 K for the chondrite samples. We also develop a material response model by solving the heat conduction equation and accounting for evaporation and oxidation reaction processes in a 1D Cartesian domain. The simulation results are in good agreement with the data collected during the experiments, highlighting the importance of iron oxidation to the material degradation.
机译:流星体在进入大气层时会大量分解,这极大地促进了宇宙物质向地球的输入。然而,它们的大气进入尚未得到很好的理解。在高焓设备中进行流星体材料降解的实验研究很少,并且在测试后将其回收后,很少能提供足够的定量数据来验证仿真工具。在这项工作中,我们研究了陨石在能够重现大气进入条件的高焓地面设施中的热化学降解机理。涉及先前用于表征航天器热保护系统的测量技术的测试方法适用于研究碱性玄武岩(此处用作陨石类似物)和普通球粒陨石样品的烧蚀。两种材料都暴露于1.2 MW m?2的冷壁停滞点热通量。由于气泡的出现而在样品表面形成的许多局部凹坑显示出材料降解的起泡现象。消融物种的时间分辨光发射光谱数据使我们能够识别钾,钙,镁和铁的主要辐射原子和离子。表面温度测量提供的玄武岩最大值为2280 K,球粒陨石样品的最大值为2360K。我们还通过求解热传导方程并考虑一维笛卡尔域中的蒸发和氧化反应过程来开发材料响应模型。模拟结果与实验期间收集的数据非常吻合,突显了铁氧化对材料降解的重要性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号