...
首页> 外文期刊>The Astrophysical journal >Dust Rotational Dynamics in C-shocks: Rotational Disruption of Nanoparticles by Stochastic Mechanical Torques and Spinning Dust Emission
【24h】

Dust Rotational Dynamics in C-shocks: Rotational Disruption of Nanoparticles by Stochastic Mechanical Torques and Spinning Dust Emission

机译:C型冲击波中的粉尘旋转动力学:随机机械转矩和旋转粉尘排放对纳米粒子的旋转破坏。

获取原文
           

摘要

Polycyclic aromatic hydrocarbons (PAHs) and nanoparticles are expected to play an important role in many astrophysical processes due to their dominant surface area, including gas heating, chemistry, star formation, and anomalous microwave emission. In dense magnetized molecular clouds where C-shocks are present, PAHs and nanoparticles are widely believed to originate from grain shattering due to grain–grain collisions. The remaining question is whether these nanoparticles can survive in the dense and hot shocked regions, and how to constrain their size and abundance with observations. In this paper, we present a new mechanism to destroy nanoparticles in C-shocks based on centrifugal stress within rapidly spinning nanoparticles spun up by stochastic atomic bombardment, which is termed rotational disruption. We find that, due to supersonic neutral gas-charged grain drift in C-shocks, nanoparticles can be spun up to suprathermal rotation by stochastic torques exerted by supersonic neutral flow. The resulting centrifugal stress within suprathermally rotating nanoparticles can exceed the maximum tensile strength of grain material (S max), resulting in rapid disruption of nanoparticles smaller than a?~?1 nm for . The proposed disruption mechanism is shown to be more efficient than thermal sputtering in controlling the lower cutoff of grain size distribution in C-shocks. We model microwave emission from spinning nanoparticles in C-shocks subject to supersonic neutral drift and rotational disruption. We find that suprathermally rotating nanoparticles can emit strong microwave radiation, and both peak flux and peak frequency increase with increasing shock velocity. We suggest spinning dust as a new method to constrain nanoparticles and trace shock velocities in shocked dense regions.
机译:由于多环芳烃(PAHs)和纳米颗粒的主要表面积,包括气体加热,化学作用,恒星形成和异常微波发射,它们有望在许多天体过程中发挥重要作用。在存在C震荡的致密磁化分子云中,人们广泛认为PAH和纳米颗粒起因于颗粒间的碰撞而引起的颗粒破碎。剩下的问题是这些纳米颗粒是否可以在稠密和热冲击的区域中生存,以及如何通过观察来限制它们的大小和丰度。在本文中,我们提出了一种新的机制,该机制基于随机原子轰击产生的快速旋转纳米粒子中的离心应力,破坏了C型冲击波中的纳米粒子,这被称为旋转破坏。我们发现,由于C型冲击中的超音速中性气体带电晶粒漂移,纳米粒子可通过超音速中性流施加的随机转矩旋转至超热旋转。在超热旋转的纳米颗粒中产生的离心应力可能超过晶粒材料的最大抗拉强度(S max),从而导致纳米颗粒小于a?〜?1 nm的纳米颗粒迅速破裂。所提出的破坏机制显示出比热溅射更有效地控制了C型冲击中较低的晶粒尺寸分布。我们对超音速中性漂移和旋转扰动下C轴中旋转纳米粒子的微波发射进行建模。我们发现,超热旋转的纳米粒子可以发出强烈的微波辐射,并且峰值通量和峰值频率都随着冲击速度的增加而增加。我们建议旋转粉尘作为一种新方法来约束纳米粒子并跟踪受冲击的密集区域中的冲击速度。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号