首页> 外文期刊>The Astrophysical journal >ATMOSPHERIC CIRCULATION OF HOT JUPITERS: DAYSIDE–NIGHTSIDE TEMPERATURE DIFFERENCES
【24h】

ATMOSPHERIC CIRCULATION OF HOT JUPITERS: DAYSIDE–NIGHTSIDE TEMPERATURE DIFFERENCES

机译:高温对流层的大气环流:白天到晚上的温度差异

获取原文
           

摘要

The full-phase infrared light curves of low-eccentricity hot Jupiters show a trend of increasing dayside-to-nightside brightness temperature difference with increasing equilibrium temperature. Here, we present a three-dimensional model that explains this relationship, in order to provide insight into the processes that control heat redistribution in tidally locked planetary atmospheres. This three-dimensional model combines predictive analytic theory for the atmospheric circulation and dayside–nightside temperature differences over a range of equilibrium temperatures, atmospheric compositions, and potential frictional drag strengths with numerical solutions of the circulation that verify this analytic theory. The theory shows that the longitudinal propagation of waves mediates dayside–nightside temperature differences in hot Jupiter atmospheres, analogous to the wave adjustment mechanism that regulates the thermal structure in Earth's tropics. These waves can be damped in hot Jupiter atmospheres by either radiative cooling or potential frictional drag. This frictional drag would likely be caused by Lorentz forces in a partially ionized atmosphere threaded by a background magnetic field, and would increase in strength with increasing temperature. Additionally, the amplitude of radiative heating and cooling increases with increasing temperature, and hence both radiative heating/cooling and frictional drag damp waves more efficiently with increasing equilibrium temperature. Radiative heating and cooling play the largest role in controlling dayside–nightside temperature differences in both our analytic theory and numerical simulations, with frictional drag only being important if it is stronger than the Coriolis force. As a result, dayside–nightside temperature differences in hot Jupiter atmospheres increase with increasing stellar irradiation and decrease with increasing pressure.
机译:低偏心度热木星的全相红外光曲线表明,随着平衡温度的升高,昼夜亮度温差增大。在这里,我们提供了一个解释此关系的三维模型,以便深入了解控制潮汐锁定的行星大气中热量再分配的过程。该三维模型将大气循环和平衡温度,大气成分和潜在摩擦阻力强度范围内日夜温度差异的预测分析理论与验证该理论的循环数值解决方案相结合。该理论表明,波的纵向传播在木星的高温大气中调节了昼夜温差,类似于调节地球热带热结构的波动调节机制。这些波可以通过辐射冷却或潜在的摩擦阻力在炎热的木星大气中衰减。这种摩擦阻力很可能是由被背景磁场穿透的部分电离的气氛中的洛伦兹力引起的,并且随着温度的升高强度会增加。另外,辐射加热和冷却的幅度随着温度的升高而增加,因此辐射加热/冷却和摩擦阻力阻尼波都随着平衡温度的提高而更有效。在我们的分析理论和数值模拟中,辐射采暖和制冷在控制日夜温差方面发挥着最大作用,而摩擦阻力只有比科里奥利力强时才重要。结果,在高温木星大气中昼夜温差随恒星辐射的增加而增加,而随压力的增加而减小。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号