首页> 外文期刊>The Astrophysical journal >ORBITAL ARCHITECTURES OF PLANET-HOSTING BINARIES. I. FORMING FIVE SMALL PLANETS IN THE TRUNCATED DISK OF KEPLER-444A*
【24h】

ORBITAL ARCHITECTURES OF PLANET-HOSTING BINARIES. I. FORMING FIVE SMALL PLANETS IN THE TRUNCATED DISK OF KEPLER-444A*

机译:占星双星的轨道结构。 I.在KEPLER-444A的截盘中形成五个小板*

获取原文
获取外文期刊封面目录资料

摘要

We present the first results from our Keck program investigating the orbital architectures of planet-hosting multiple star systems. Kepler-444 is a metal-poor triple star system that hosts five sub-Earth-sized planets orbiting the primary star (Kepler-444A), as well as a spatially unresolved pair of M dwarfs (Kepler-444BC) at a projected distance of (66 AU). We combine our Keck/NIRC2 adaptive optics astrometry with multi-epoch Keck/HIRES RVs of all three stars to determine a precise orbit for the BC pair around A, given their empirically constrained masses. We measure minimal astrometric motion (1.0 ± 0.6 mas yr?1, or 0.17 ± 0.10 km s?1), but our RVs reveal significant orbital velocity (1.7 ± 0.2 km s?1) and acceleration (7.8 ± 0.5 m s?1 yr?1). We determine a highly eccentric stellar orbit () that brings the tight M?dwarf pair within AU of the planetary system. We validate that the system is dynamically stable in its present configuration via n-body simulations. We find that the A–BC orbit and planetary orbits are likely aligned (98%) given that they both have edge-on orbits and misalignment induces precession of the planets out of transit. We conclude that the stars were likely on their current orbits during the epoch of planet formation, truncating the protoplanetary disk at ≈2 AU. This truncated disk would have been severely depleted of solid material from which to form the total ≈1.5 M⊕ of planets. We thereby strongly constrain the efficiency of the conversion of dust into planets and suggest that the Kepler-444 system is consistent with models that explain the formation of most close-in Kepler planets in more typical, not truncated, disks.
机译:我们提供了凯克计划研究行星托管多颗恒星系统的轨道架构的第一个结果。开普勒444是一种金属贫乏的三星系统,拥有五个环绕着主恒星运行的亚地球大小的行星(Kepler-444A),以及一对空间上尚未解析的M矮星(Kepler-444BC),其投影距离为(66 AU)。我们将Keck / NIRC2自适应光学天文测量技术与所有三颗星的多历时Keck / HIRES RV结合起来,以确定在质量上受其约束的BC对的精确轨道。我们测量了最小的天体运动(1.0±0.6 mas s?1,或0.17±0.10 km s?1),但是我们的RV显示出明显的轨道速度(1.7±0.2 km s?1)和加速度(7.8±0.5 ms?1 yr) 1)。我们确定一个高度偏心的恒星轨道(),使紧密的Mdwarf对进入行星系统的AU。我们通过n体仿真验证了该系统在其当前配置中动态稳定。我们发现,A–BC轨道和行星轨道很可能对齐(98%),因​​为它们都具有边沿轨道,并且未对齐会导致行星进出轨道。我们得出的结论是,恒星可能在行星形成的时期处于其当前轨道上,从而在≈2AU处截断了原行星盘。截短的圆盘本来会严重地耗尽固体材料,从中形成总共约1.5M⊕的行星。因此,我们强烈地限制了将尘埃转换成行星的效率,并建议开普勒444系统与解释最接近的开普勒行星(更典型的而非截断的圆盘)形成的模型一致。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号