首页> 外文期刊>The Astrophysical journal >EXTERNAL PHOTOEVAPORATION OF THE SOLAR NEBULA. II. EFFECTS ON DISK STRUCTURE AND EVOLUTION WITH NON-UNIFORM TURBULENT VISCOSITY DUE TO THE MAGNETOROTATIONAL INSTABILITY
【24h】

EXTERNAL PHOTOEVAPORATION OF THE SOLAR NEBULA. II. EFFECTS ON DISK STRUCTURE AND EVOLUTION WITH NON-UNIFORM TURBULENT VISCOSITY DUE TO THE MAGNETOROTATIONAL INSTABILITY

机译:太阳星云的外部光蒸发。二。磁旋转不稳定对非均匀湍流黏度对盘结构和演化的影响

获取原文
           

摘要

The structure and evolution of protoplanetary disks, especially the radial flows of gas through them, are sensitive to a number of factors. One that has been considered only occasionally in the literature is external photoevaporation by far-ultraviolet (FUV) radiation from nearby, massive stars, despite the fact that nearly half of disks will experience photoevaporation. Another effect apparently not considered in the literature is a spatially and temporally varying value of α in the disk (where the turbulent viscosity ν is α times the sound speed C times the disk scale height H). Here we use the formulation of Bai & Stone to relate α to the ionization fraction in the disk, assuming turbulent transport of angular momentum is due to the magnetorotational instability. We calculate the ionization fraction of the disk gas under various assumptions about ionization sources and dust grain properties. Disk evolution is most sensitive to the surface area of dust. We find that typically α??10?5 in the inner disk (2 AU), rising to ~10?1 beyond 20 AU. This drastically alters the structure of the disk and the flow of mass through it: while the outer disk rapidly viscously spreads, the inner disk hardly evolves; this leads to a steep surface density profile ( with ?≈?2–5 in the 5–30 AU region) that is made steeper by external photoevaporation. We also find that the combination of variable α and external photoevaporation eventually causes gas as close as 3 AU, previously accreting inward, to be drawn outward to the photoevaporated outer edge of the disk. These effects have drastic consequences for planet formation and volatile transport in protoplanetary disks.
机译:原行星盘的结构和演化,特别是气体通过它们的径向流动对许多因素敏感。尽管几乎有一半的磁盘将经历光蒸发,但文献中仅偶尔考虑的一种是来自附近大质量恒星的远紫外线(FUV)辐射造成的外部光蒸发。在文献中显然没有考虑的另一个影响是圆盘中α的时空变化值(其中湍流粘度ν是α乘以声速C乘以圆盘刻度高度H)。在这里,我们使用Bai&Stone的公式将α与磁盘中的电离比例相关联,假设角动量的湍流传输是由于磁旋转不稳定性造成的。我们在有关电离源和粉尘颗粒性质的各种假设下计算磁盘气体的电离分数。磁盘的演变对灰尘的表面积最敏感。我们发现,内盘中的α?10?10?5(<2 AU),超过20 AU时升至〜10?1。这极大地改变了磁盘的结构和通过它的质量流:当外磁盘迅速粘稠地扩散时,内磁盘几乎不演化;这将导致陡峭的表面密度分布(在5-30 AU区域中具有?≈?2-5),并由于外部光蒸发而变得更陡峭。我们还发现,变量α和外部光蒸发的结合最终导致气体(接近3 AU,以前向内吸积)被向外吸到磁盘的光蒸发外边缘。这些影响对行星的形成和原行星盘中的挥发性运输产生了严重的后果。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号