首页> 外文期刊>The Astrophysical journal >PLASMA PHYSICAL PARAMETERS ALONG CME-DRIVEN SHOCKS. II. OBSERVATION–SIMULATION COMPARISON
【24h】

PLASMA PHYSICAL PARAMETERS ALONG CME-DRIVEN SHOCKS. II. OBSERVATION–SIMULATION COMPARISON

机译:沿CME驱动的电击的等离子体物理参数。二。观测-模拟比较

获取原文
获取外文期刊封面目录资料

摘要

In this work, we compare the spatial distribution of the plasma parameters along the 1999 June 11 coronal mass ejection (CME)-driven shock front with the results obtained from a CME-like event simulated with the FLIPMHD3D code, based on the FLIP-MHD particle-in-cell method. The observational data are retrieved from the combination of white-light coronagraphic data (for the upstream values) and the application of the Rankine–Hugoniot equations (for the downstream values). The comparison shows a higher compression ratio X and Alfvénic Mach number MA at the shock nose, and a stronger magnetic field deflection d toward the flanks, in agreement with observations. Then, we compare the spatial distribution of MA with the profiles obtained from the solutions of the shock adiabatic equation relating MA, X, and (the angle between the upstream magnetic field and the shock front normal) for the special cases of parallel and perpendicular shock, and with a semi-empirical expression for a generically oblique shock. The semi-empirical curve approximates the actual values of MA very well, if the effects of a non-negligible shock thickness and plasma-to magnetic pressure ratio are taken into account throughout the computation. Moreover, the simulated shock turns out to be supercritical at the nose and sub-critical at the flanks. Finally, we develop a new one-dimensional Lagrangian ideal MHD method based on the GrAALE code, to simulate the ion-electron temperature decoupling due to the shock transit. Two models are used, a simple solar wind model and a variable-γ model. Both produce results in agreement with observations, the second one being capable of introducing the physics responsible for the additional electron heating due to secondary effects (collisions, Alfvén waves, etc.).
机译:在这项工作中,我们将血浆参数沿1999年6月11日冠状物质抛射(CME)驱动的激波锋的空间分布与基于FLIPMHD3D代码模拟的类似CME事件的结果进行比较细胞内颗粒法。观测数据是从白光冠层数据(用于上游值)和应用兰金-休格尼奥特方程(用于下游值)的组合中获取的。比较表明,与观察结果一致,在冲击波鼻处的压缩比X和Alfvénic马赫数MA更高,而朝向侧面的磁场偏转d则更强。然后,对于平行和垂直冲击的特殊情况,我们将MA的空间分布与从与MA,X和(上游磁场与冲击前沿法线之间的角度)有关的绝热方程解得出的轮廓进行比较。 ,并带有一般斜向冲击的半经验表达式。如果在整个计算过程中考虑到不可忽略的冲击厚度和等离子与电磁压力之比的影响,则半经验曲线将很好地逼近MA的实际值。而且,模拟的冲击在机头处是超临界的,在侧面处是亚临界的。最后,我们基于GrAALE代码开发了一种新的一维拉格朗日理想MHD方法,以模拟由于冲击传递而引起的离子电子温度去耦。使用两个模型,一个简单的太阳风模型和一个可变γ模型。两种方法都产生与观察结果一致的结果,第二种方法能够引入由于次级效应(碰撞,Alfvén波等)而引起额外的电子加热的物理学。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号