首页> 外文期刊>The Astrophysical journal >FULL WAVEFORM INVERSION OF SOLAR INTERIOR FLOWS
【24h】

FULL WAVEFORM INVERSION OF SOLAR INTERIOR FLOWS

机译:太阳内部流动的全波形反演

获取原文
获取外文期刊封面目录资料

摘要

The inference of flows of material in the interior of the Sun is a subject of major interest in helioseismology. Here, we apply techniques of full waveform inversion (FWI) to synthetic data to test flow inversions. In this idealized setup, we do not model seismic realization noise, training the focus entirely on the problem of whether a chosen supergranulation flow model can be seismically recovered. We define the misfit functional as a sum of L 2 norm deviations in travel times between prediction and observation, as measured using short-distance filtered f and p 1 and large-distance unfiltered p modes. FWI allows for the introduction of measurements of choice and iteratively improving the background model, while monitoring the evolution of the misfit in all desired categories. Although the misfit is seen to uniformly reduce in all categories, convergence to the true model is very slow, possibly because it is trapped in a local minimum. The primary source of error is inaccurate depth localization, which, due to density stratification, leads to wrong ratios of horizontal and vertical flow velocities ("cross talk"). In the present formulation, the lack of sufficient temporal frequency and spatial resolution makes it difficult to accurately localize flow profiles at depth. We therefore suggest that the most efficient way to discover the global minimum is to perform a probabilistic forward search, involving calculating the misfit associated with a broad range of models (generated, for instance, by a Monte Carlo algorithm) and locating the deepest minimum. Such techniques possess the added advantage of being able to quantify model uncertainty as well as realization noise (data uncertainty).
机译:太阳内部物质流的推论是日震学研究的一个重要课题。在这里,我们将全波形反演(FWI)技术应用于合成数据以测试流量反演。在这种理想化的设置中,我们不对地震实现噪声进行建模,而是将重点完全放在是否可以通过地震恢复选定的超颗粒流动模型这一问题上。我们将失配函数定义为在预测和观察之间的传播时间中,L 2范数偏差的总和,这是使用短距离滤波的f和p 1和大距离未滤波的p模式测量的。 FWI允许引入选择的度量并迭代地改进背景模型,同时监视所有期望类别中的失配的演变。尽管失配在所有类别中都在均匀减少,但收敛到真实模型的速度非常慢,这可能是因为它陷入了局部最小值。误差的主要来源是深度定位不准确,由于密度分层,导致水平和垂直流速的比率不正确(“串扰”)。在本发明中,缺乏足够的时间频率和空间分辨率使得难以准确地将流动剖面定位在深处。因此,我们建议发现全局最小值的最有效方法是执行概率正向搜索,包括计算与多种模型(例如,通过蒙特卡洛算法生成的)相关的失配并找到最深的最小值。这样的技术具有能够量化模型不确定性以及实现噪声(数据不确定性)的附加优势。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号