...
首页> 外文期刊>The Astrophysical journal >THERMONUCLEAR SUPERNOVAE: PROBING MAGNETIC FIELDS BY POSITRONS AND LATE-TIME IR LINE PROFILES
【24h】

THERMONUCLEAR SUPERNOVAE: PROBING MAGNETIC FIELDS BY POSITRONS AND LATE-TIME IR LINE PROFILES

机译:热核超新星:正电子探测磁场和时线红外谱线

获取原文
   

获取外文期刊封面封底 >>

       

摘要

We show the importance of γ and positron transport for the formation of late-time spectra in Type Ia supernovae (SNe Ia). The goal is to study the imprint of magnetic fields (B) on late-time IR line profiles, particularly the [Fe II] feature at 1.644 μm, which becomes prominent two to three months after the explosion. As a benchmark, we use the explosion of a Chandrasekhar mass (M Ch) white dwarf (WD) and, specifically, a delayed detonation model that can reproduce the light curves and spectra for a Branch-normal SN Ia. We assume WDs with initial magnetic surface fields between 1 and 109 G. We discuss large-scale dipole and small-scale magnetic fields. We show that positron transport effects must be taken into account for the interpretation of emission features starting at about one to two years after maximum light, depending on the size of B. The [Fe II] line profile and its evolution with time can be understood in terms of the overall energy input by radioactive decay and the transition from a γ-ray to a positron-dominated regime. We find that the [Fe II] line at 1.644 μm can be used to analyze the overall chemical and density structure of the exploding WD up to day 200 without considering B. At later times, positron transport and magnetic field effects become important. After about day 300, the line profile allows one to probe the size of the B-field. The profile becomes sensitive to the morphology of B at about day 500. In the presence of a large-scale dipole field, a broad line is produced in M Ch mass explosions that may appear flat-topped or rounded depending on the inclination at which the SN is observed. Small or no directional dependence of the spectra is found for small-scale B. We note that narrow-line profiles require central 56Ni as shown in our previous studies. Persistent broad-line, flat-topped profiles require high-density burning, which is the signature of a WD close to M Ch. Good time coverage is required to separate the effects of optical depth, the size and morphology of B, and the aspect angle of the observer. The spectra require a resolution of about 500 km s–1 and a signal-to-noise ratio of about 20%. Two other strong near-IR spectral features at about 1.5 and 1.8 μm are used to demonstrate the importance of line blending, which may invalidate a kinematic interpretation of emission lines. Flat-topped line profiles between 300 and 400?days have been observed and reported in the literature. They lend support for M Ch mass explosions in at least some cases and require magnetic fields equal to or in excess of 106 G. We briefly discuss the effects of the size and morphology of B on light curves, as well as limitations. We argue that line profiles are a more direct measurement of B than light curves because they measure both the distribution of 56Ni and the redistribution of the energy input by positrons rather than the total energy input. Finally, we discuss possible mechanisms for the formation of high B-fields and the limitations of our analysis.
机译:我们显示出γ和正电子传输对于Ia型超新星(SNe Ia)后期光谱形成的重要性。目的是研究磁场(B)在后期IR线轮廓上的烙印,尤其是1.644μm的[Fe II]特征,该特征在爆炸后两到三个月就变得很明显。作为基准,我们使用Chandrasekhar质量(M Ch)白矮星(WD)的爆炸,尤其是使用延迟爆轰模型,该模型可以重现分支法线SN Ia的光曲线和光谱。我们假设WD的初始磁场表面范围在1到109 G之间。我们讨论了大型偶极磁场和小型磁场。我们表明,在最大光量大约一到两年后开始的发射特征解释中,必须考虑到正电子传输效应,具体取决于B的大小。[Fe II]谱线及其随时间的演变可以理解从放射性衰变的总能量输入以及从γ射线到以正电子为主的状态的跃迁方面。我们发现1.644μm的[Fe II]线可用于分析爆炸的WD直至200天的整体化学和密度结构,而无需考虑B。在以后的时间,正电子传输和磁场效应变得很重要。在大约第300天后,线轮廓允许人们探测B场的大小。在大约第500天时,该轮廓对B的形态变得敏感。在存在大规模偶极子场的情况下,M Ch物质爆炸会产生一条宽线,视爆炸的倾角而定,它可能呈平顶或圆形。观察到SN。对于小规模的B,发现光谱的方向依赖性很小或没有。我们注意到,窄线轮廓需要中心56Ni,如我们先前的研究所示。持久的宽线,平顶型材需要高密度燃烧,这是WD接近M Ch的特征。需要良好的时间覆盖范围以分离光学深度,B的大小和形态以及观察者的纵横角的影响。光谱需要约500 km s-1的分辨率和约20%的信噪比。另外两个大约1.5和1.8μm的强近红外光谱特征被用来证明线混合的重要性,这可能会使发射线的运动学解释无效。在文献中已观察到300至400天的平顶线剖面。他们至少在某些情况下为M Ch大规模爆炸提供了支持,并需要等于或超过106 G的磁场。我们简要讨论了B的大小和形态对光曲线的影响以及局限性。我们认为线轮廓比光曲线更直接地测量B,因为线轮廓既可以测量56Ni的分布,也可以测量正电子输入的能量的重新分布,而不是总能量输入。最后,我们讨论了形成高B场的可能机制以及我们分析的局限性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号