...
首页> 外文期刊>The Astrophysical journal >LOW-MASS PLANETS IN PROTOPLANETARY DISKS WITH NET VERTICAL MAGNETIC FIELDS: THE PLANETARY WAKE AND GAP OPENING
【24h】

LOW-MASS PLANETS IN PROTOPLANETARY DISKS WITH NET VERTICAL MAGNETIC FIELDS: THE PLANETARY WAKE AND GAP OPENING

机译:具有净垂直磁场的原行星盘中的低质量行星:行星苏醒和空位张开

获取原文
           

摘要

Some regions in protoplanetary disks are turbulent, while some regions are quiescent (e.g. the dead zone). In order to study how planets open gaps in both inviscid hydrodynamic disk (e.g. the dead zone) and the disk subject to magnetorotational instability (MRI), we carried out both shearing box two-dimensional inviscid hydrodynamical simulations and three-dimensional unstratified magnetohydrodynamical (MHD) simulations (having net vertical magnetic fields) with a planet at the box center. We found that, due to the nonlinear wave steepening, even a low mass planet can open gaps in both cases, in contradiction to the "thermal criterion" for gap opening. In order to understand if we can represent the MRI turbulent stress with the viscous α prescription for studying gap opening, we compare gap properties in MRI-turbulent disks to those in viscous HD disks having the same stress, and found that the same mass planet opens a significantly deeper and wider gap in net vertical flux MHD disks than in viscous HD disks. This difference arises due to the efficient magnetic field transport into the gap region in MRI disks, leading to a larger effective α within the gap. Thus, across the gap, the Maxwell stress profile is smoother than the gap density profile, and a deeper gap is needed for the Maxwell stress gradient to balance the planetary torque density. Comparison with previous results from net toroidal flux/zero flux MHD simulations indicates that the magnetic field geometry plays an important role in the gap opening process. We also found that long-lived density features (termed zonal flows) produced by the MRI can affect planet migration. Overall, our results suggest that gaps can be commonly produced by low mass planets in realistic protoplanetary disks, and caution the use of a constant α-viscosity to model gaps in protoplanetary disks.
机译:原行星盘中的某些区域是湍流的,而某些区域是静止的(例如,死区)。为了研究行星如何在无粘性流体动力盘(例如死区)和承受磁旋转不稳定性(MRI)的盘中打开间隙,我们进行了剪切盒二维无粘性流体动力模拟和三维非分层磁流体动力(MHD) )模拟(在框中心处有行星)。我们发现,由于非线性波变陡,在这两种情况下,即使是低质量的行星也可以打开缝隙,这与缝隙打开的“热标准”相矛盾。为了理解我们是否可以用粘性α处方来表示MRI湍流应力来研究间隙的开口,我们将MRI湍流盘中的间隙特性与具有相同应力的粘性HD盘中的间隙特性进行了比较,并发现打开了相同的质量行星净垂直磁通量MHD磁盘的间隙比粘性HD磁盘大得多,而且更深。这种差异的产生是由于有效的磁场传输到MRI磁盘的间隙区域中,导致间隙内的有效α较大。因此,在整个间隙中,麦克斯韦应力分布图比间隙密度分布图更平滑,并且需要更大的间隙才能使麦克斯韦应力梯度平衡行星扭矩密度。与净环形磁通量/零磁通量MHD仿真的先前结果进行比较表明,磁场几何形状在间隙打开过程中起着重要作用。我们还发现,MRI产生的长寿命密度特征(称为纬向气流)会影响行星的迁移。总的来说,我们的结果表明,现实中的原行星盘中的低质量行星通常会产生间隙,并提醒使用恒定的α粘度来模拟原行星盘中的间隙。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号