...
首页> 外文期刊>The Astrophysical journal >A FULLY BAYESIAN METHOD FOR JOINTLY FITTING INSTRUMENTAL CALIBRATION AND X-RAY SPECTRAL MODELS
【24h】

A FULLY BAYESIAN METHOD FOR JOINTLY FITTING INSTRUMENTAL CALIBRATION AND X-RAY SPECTRAL MODELS

机译:完全拟合仪器校准和X射线光谱模型的完全贝叶斯方法

获取原文

摘要

Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The?method is "pragmatic" in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use a principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.
机译:由于缺乏可靠的有原则的方法,尽管人们广泛认识到包括在内的重要性,但在天体数据分析中通常忽略了系统的仪器不确定性。忽略校准不确定性会导致源模型参数估计中的偏差,并可能导致这些估计方差的低估。我们先前介绍了一种实用的贝叶斯方法来解决此问题。该方法是“实用的”方法,因为它引入了一种临时技术,该技术通过忽略数据中的潜在信息来简化校准产品的不确定性,从而简化了计算。完成这项工作后,我们使用主成分分析来有效表示X射线(或γ射线)望远镜有效面积的不确定性。但是,在这里,我们利用这种表示法来实现一种原理化的完全贝叶斯方法,该方法连贯地说明了高能谱分析中的校准不确定性。在这种情况下,将该方法与标准分析技术和实用贝叶斯方法进行了比较。完全贝叶斯方法的优点在于,它允许数据不仅为估算源参数提供信息,而且还为校准产品(此处为有效面积)提供信息,该条件取决于所采用的光谱模型。这样,它可以对源参数产生更准确,更有效的估计,以及对其不确定性的有效估计。如果可以通过参数化模型准确描述源光谱,则该方法可以通过量化哪些可能的曲线与数据最一致来对有效面积进行严格推断。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号