...
首页> 外文期刊>The Astrophysical journal >PLANET FORMATION IN BINARIES: DYNAMICS OF PLANETESIMALS PERTURBED BY THE ECCENTRIC PROTOPLANETARY DISK AND THE SECONDARY
【24h】

PLANET FORMATION IN BINARIES: DYNAMICS OF PLANETESIMALS PERTURBED BY THE ECCENTRIC PROTOPLANETARY DISK AND THE SECONDARY

机译:双星的行星形成:偏心行星和二次行星扰动的行星动力学。

获取原文

摘要

Detections of planets in eccentric, close (separations of ~20 AU) binary systems such as α Cen or γ Cep provide an important test of planet formation theories. Gravitational perturbations from the companion are expected to excite high planetesimal eccentricities, resulting in destruction rather than growth of objects with sizes of up to several hundred kilometers in collisions of similar-sized bodies. It was recently suggested that the gravity of a massive axisymmetric gaseous disk in which planetesimals are embedded drives rapid precession of their orbits, suppressing eccentricity excitation. However, disks in binaries are themselves expected to be eccentric, leading to additional planetesimal excitation. Here we develop a secular theory of eccentricity evolution for planetesimals perturbed by the gravity of an elliptical protoplanetary disk (neglecting gas drag) and the companion. For the first time, we derive an expression for the disturbing function due to an eccentric disk, which can be used for a variety of other astrophysical problems. We obtain explicit analytical solutions for planetesimal eccentricity evolution neglecting gas drag and delineate four different regimes of dynamical excitation. We show that in systems with massive ( 10–2 M ☉) disks, planetesimal eccentricity is usually determined by the gravity of the eccentric disk alone, and is comparable to the disk eccentricity. As a result, the latter imposes a lower limit on collisional velocities of solids, making their growth problematic. In the absence of gas drag, this fragmentation barrier can be alleviated if the gaseous disk rapidly precesses or if its own self-gravity is efficient at lowering disk eccentricity.
机译:在偏心,紧密(约20 AU的分离)二元系统(例如αCen或γCep)中检测行星,为行星形成理论提供了重要的检验。来自同伴的引力扰动预计会激发高的行星偏心率,从而导致破坏而不是生长类似大小物体的碰撞中长达数百公里的物体。最近有人提出,嵌有小行星的巨大轴对称气态圆盘的重力驱动其轨道快速进动,从而抑制了偏心率的激发。但是,二进制文件中的磁盘本身可能会偏心,从而导致额外的行星状激发。在这里,我们发展了一个受椭圆形原行星盘(忽略气体阻力)和伴星的引力干扰的小行星偏心演化的世俗理论。首次,我们导出了由于偏心盘引起的扰动函数的表达式,该表达式可用于其他各种天体物理学问题。我们获得了忽略气体阻力的行星偏心率演化的显式解析解,并描绘了四种不同的动态激励机制。我们表明,在具有大块磁盘(10–2 M disk)的系统中,小行星偏心率通常由偏心盘的引力决定,并且与盘偏心率相当。结果,后者对固体的碰撞速度施加了下限,使它们的生长成为问题。在没有气体阻力的情况下,如果气碟快速进动,或者气碟自身的自重能有效降低碟形偏心率,则可以消除这种碎裂障碍。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号