...
首页> 外文期刊>The Astrophysical journal >EVOLUTION IN THE VOLUMETRIC TYPE Ia SUPERNOVA RATE FROM THE SUPERNOVA LEGACY SURVEY
【24h】

EVOLUTION IN THE VOLUMETRIC TYPE Ia SUPERNOVA RATE FROM THE SUPERNOVA LEGACY SURVEY

机译:超新星遗留性调查中Ia超新星体积率的演变

获取原文
   

获取外文期刊封面封底 >>

       

摘要

We present a measurement of the volumetric Type Ia supernova (SN Ia) rate (SNRIa) as a function of redshift for the first four years of data from the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). This analysis includes 286 spectroscopically confirmed and more than 400 additional photometrically identified SNe Ia within the redshift range 0.1 ≤ z ≤ 1.1. The volumetric SNRIa evolution is consistent with a rise to z ~ 1.0 that follows a power law of the form (1+z)α, with α = 2.11 ± 0.28. This evolutionary trend in the SNLS rates is slightly shallower than that of the cosmic star formation history (SFH) over the same redshift range. We combine the SNLS rate measurements with those from other surveys that complement the SNLS redshift range, and fit various simple SN Ia delay-time distribution (DTD) models to the combined data. A simple power-law model for the DTD (i.e., ∝t –β) yields values from β = 0.98 ± 0.05 to β = 1.15 ± 0.08 depending on the parameterization of the cosmic SFH. A two-component model, where SNRIa is dependent on stellar mass (M stellar) and star formation rate (SFR) as SNRIa(z) = A × M stellar(z) + B × SFR(z), yields the coefficients A = (1.9 ± 0.1) × 10–14 SNe yr–1 M –1 ☉ and B = (3.3 ± 0.2) × 10–4 SNe yr–1 (M ☉ yr–1)–1. More general two-component models also fit the data well, but single Gaussian or exponential DTDs provide significantly poorer matches. Finally, we split the SNLS sample into two populations by the light-curve width (stretch), and show that the general behavior in the rates of faster-declining SNe Ia (0.8 ≤ s 1.0) is similar, within our measurement errors, to that of the slower objects (1.0 ≤ s 1.3) out to z ~ 0.8.
机译:对于来自加拿大-法国-夏威夷望远镜超新星遗留物调查(SNLS)的前四年数据,我们提出了Ia型超新星(SN Ia)体积率(SNRIa)随红移的测量。该分析包括在红移范围0.1≤z≤1.1范围内的286个经光谱确认的SNe Ia,以及400多个通过光度识别的SNe Ia。体积SNRIa的演变与z〜1.0的上升保持一致,该上升遵循形式为(1 + z)α的幂定律,其中α= 2.11±0.28。在相同的红移范围内,SNLS速率的这种演变趋势比宇宙恒星形成历史(SFH)的趋势略浅。我们将SNLS速率测量与来自其他调查的测量相结合,以补充SNLS红移范围,并将各种简单的SN Ia延迟时间分布(DTD)模型拟合到组合数据。根据宇宙SFH的参数化,用于DTD的简单幂律模型(即∝t –β)产生的值从β= 0.98±0.05到β= 1.15±0.08。当SNRIa(z)= A×M Stellar(z)+ B×SFR(z)时,SNRIa取决于恒星质量(M stellar)和恒星形成率(SFR)的两成分模型得出系数A = (1.9±0.1)×10–14 SNe yr–1 M –1☉和B =(3.3±0.2)×10–4 SNe yr–1(M×yr–1)–1。更通用的两分量模型也很好地拟合了数据,但是单个高斯或指数DTD提供的匹配性差得多。最后,我们通过光曲线宽度(拉伸)将SNLS样本分为两个总体,并表明在我们的测量误差范围内,快速下降的SNe Ia(0.8≤s <1.0)速率的一般行为是相似的,相对较慢的对象(1.0≤s <1.3)的结果为z〜0.8。
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号