...
首页> 外文期刊>The Astrophysical journal >GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY-MASS-STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS
【24h】

GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY-MASS-STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS

机译:星系的气体调节:宇宙特定恒星形成率,金属-质量-恒星形成率关系以及光晕的恒星含量的演变

获取原文
           

摘要

A very simple physical model of galaxies is one in which the formation of stars is instantaneously regulated by the mass of gas in a reservoir with mass loss scaling with the star-formation rate (SFR). This model links together three different aspects of the evolving galaxy population: (1) the cosmic time evolution of the specific star-formation rate (sSFR) relative to the growth of halos, (2) the gas-phase metallicities across the galaxy population and over cosmic time, and (3) the ratio of the stellar to dark matter mass of halos. The gas regulator is defined by the gas consumption timescale (ε–1) and the mass loading λ of the wind outflow λSFR. The simplest regulator, in which ε and λ are constant, sets the sSFR equal to exactly the specific accretion rate of the galaxy; more realistic situations lead to an sSFR that is perturbed from this precise relation. Because the gas consumption timescale is shorter than the timescale on which the system evolves, the metallicity Z is set primarily by the instantaneous operation of the regulator system rather than by the past history of the system. The metallicity of the gas reservoir depends on ε, λ, and sSFR, and the regulator system therefore naturally produces a Z(m star, SFR) relation if ε and λ depend on the stellar mass m star. Furthermore, this relation will be the same at all epochs unless the parameters ε and λ themselves change with time. A so-called fundamental metallicity relation is naturally produced by these conditions. The overall mass-metallicity relation Z(m star) directly provides the fraction f star(m star) of incoming baryons that are being transformed into stars. The observed Z(m star) relation of Sloan Digital Sky Survey (SDSS) galaxies implies a strong dependence of stellar mass on halo mass that reconciles the different faint-end slopes of the stellar and halo mass functions in standard ΛCDM models. The observed relation also boosts the sSFR relative to the specific accretion rate and produces a different dependence on mass, both of which are observed. The derived Z(m star, SFR) relation for the regulator system is fit to published Z(m star, SFR) data for the SDSS galaxy population, yielding ε and λ as functions of m star. The fitted ε is consistent with observed molecular gas-depletion timescales in galaxies (allowing for the extra atomic gas), while the fitted λ is also reasonable. The gas-regulator model also successfully reproduces the Z(m star) metallicities of star-forming galaxies at z ~ 2. One consequence of this analysis is that it suggests that the m star-m halo relation is established by baryonic processes operating within galaxies, and that a significant fraction (40%) of baryons coming into the halos are being processed through the galaxies. This fraction may be more or less constant. The success of the gas-regulator model in simultaneously explaining many diverse observed relations over the 0 z??2 interval suggests that the evolution of galaxies is governed by simple physics that form the basis for this model.
机译:一个非常简单的星系物理模型是这样一个模型,其中恒星的形成由储层中的气体质量瞬时调节,质量损失与恒星形成率(SFR)成比例。该模型将演化中的银河系种群的三个不同方面联系在一起:(1)特定恒星形成率(sSFR)相对于光环生长的宇宙时间演化;(2)整个银河系种群的气相金属态和(3)晕的恒星与暗物质的质量比。气体调节器由气体消耗时间标度(ε-1)和出风口的质量负荷λSFR定义。最简单的调节器(其中ε和λ恒定)将sSFR设置为恰好等于银河系的特定吸积率。更现实的情况会导致sSFR受此精确关系的干扰。因为气体消耗时间标度比系统演化的时间标度短,所以金属性Z主要是由调节器系统的瞬时操作而不是由系统的过去历史来设定的。储气库的金属性取决于ε,λ和sSFR,因此,如果ε和λ取决于恒星质量m star,则调节器系统自然会产生Z(m star,SFR)关系。此外,除非参数ε和λ本身随时间变化,否则在所有时期该关系都是相同的。这些条件自然产生所谓的基本金属性关系。整体质量金属关系Z(m star)直接提供了被转化为恒星的重子的分数f star(m star)。斯隆数字天空测量(SDSS)星系的Z(m星)关系表明,恒星质量对晕质量的强烈依赖性,这使标准ΛCDM模型中恒星和晕质量函数的不同微弱末端斜率协调一致。观察到的关系也相对于特定的积聚率提高了sSFR,并且对质量产生了不同的依赖性,这两种情况都可以观察到。调节器系统的导出Z(m star,SFR)关系适合于SDSS星系种群的已发布Z(m star,SFR)数据,得出ε和λ是m star的函数。拟合的ε与星系中观察到的分子气体耗尽时标一致(允许额外的原子气体),而拟合的λ也很合理。气体调节器模型还成功地再现了在z〜2处的恒星形成星系的Z(m星)金属性。这一分析的结果是,它表明m星-m晕关系是由星系中运行的重子过程建立的。 ,并且进入银环的重子中有很大一部分(40%)正在通过星系进行处理。该分数可以大致恒定。气体调节器模型成功地同时解释了在0

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号