首页> 外文期刊>The Astrophysical journal >COLLISIONS BETWEEN GRAVITY-DOMINATED BODIES. II. THE DIVERSITY OF IMPACT OUTCOMES DURING THE END STAGE OF PLANET FORMATION
【24h】

COLLISIONS BETWEEN GRAVITY-DOMINATED BODIES. II. THE DIVERSITY OF IMPACT OUTCOMES DURING THE END STAGE OF PLANET FORMATION

机译:重力控制主体之间的碰撞。二。行星形成末期影响结果的多样性

获取原文
获取外文期刊封面目录资料

摘要

Numerical simulations of the stochastic end stage of planet formation typically begin with a population of embryos and planetesimals that grow into planets by merging. We analyzed the impact parameters of collisions leading to the growth of terrestrial planets from recent N-body simulations that assumed perfect merging and calculated more realistic outcomes using a new analytic collision physics model. We find that collision outcomes are diverse and span all possible regimes: hit-and-run, merging, partial accretion, partial erosion, and catastrophic disruption. The primary outcomes of giant impacts between planetary embryos are approximately evenly split between partial accretion, graze-and-merge, and hit-and-run events. To explore the cumulative effects of more realistic collision outcomes, we modeled the growth of individual planets with a Monte Carlo technique using the distribution of impact parameters from N-body simulations. We find that fewer planets reached masses 0.7 M Earth using the collision physics model compared to simulations that assumed every collision results in perfect merging. For final planets with masses 0.7 M Earth, 60% are enriched in their core-to-mantle mass fraction by 10% compared to the initial embryo composition. Fragmentation during planet formation produces significant debris (~15% of the final mass) and occurs primarily by erosion of the smaller body in partial accretion and hit-and-run events. In partial accretion events, the target body grows by preferentially accreting the iron core of the projectile and the escaping fragments are derived primarily from the silicate mantles of both bodies. Thus, the bulk composition of a planet can evolve via stochastic giant impacts.
机译:行星形成随机结束阶段的数值模拟通常从大量的胚胎和小行星开始,这些小行星和小行星通过合并成长为行星。我们从最近的N体模拟中分析了导致地球行星增长的碰撞的冲击参数,这些模拟假设了完美的合并,并使用新的解析碰撞物理模型计算了更现实的结果。我们发现碰撞结果是多种多样的,并且涉及所有可能的情况:即冲即跑,合并,部分积聚,部分腐蚀和灾难性破坏。行星胚之间巨大撞击的主要结果在部分吸积,掠食和合并以及撞击和逃跑事件之间平均分配。为了探索更现实的碰撞结果的累积效应,我们使用了来自N体模拟的碰撞参数分布,使用蒙特卡洛技术对单个行星的生长进行了建模。我们发现,与假设每一次碰撞都能实现完美融合的模拟相比,使用碰撞物理模型能够获得质量> 0.7 M地球的行星数量更少。对于质量大于0.7 M地球的最终行星,与初始胚胎组成相比,其60%的核-幔质量比富集了10%以上。行星形成过程中的碎片会产生大量碎片(约占最终质量的15%),并且主要是由于部分吸积和撞车事件中较小物体的腐蚀而发生的。在部分积聚事件中,目标物体通过优先积聚弹丸的铁芯而生长,逸出的碎片主要来自两个物体的硅酸盐地幔。因此,行星的整体组成可以通过随机的巨大撞击而演化。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号