...
首页> 外文期刊>The Astrophysical journal >LOCAL SIMULATIONS OF THE MAGNETOROTATIONAL INSTABILITY IN CORE-COLLAPSE SUPERNOVAE
【24h】

LOCAL SIMULATIONS OF THE MAGNETOROTATIONAL INSTABILITY IN CORE-COLLAPSE SUPERNOVAE

机译:核塌陷超新星中磁旋转不稳定性的局部模拟

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Bearing in mind the application of core-collapse supernovae, we study the nonlinear properties of the magnetorotational instability (MRI) by means of three-dimensional simulations in the framework of a local shearing box approximation. By systematically changing the shear rates that symbolize the degree of differential rotation in nascent proto-neutron stars (PNSs), we derive a scaling relation between the turbulent stress sustained by the MRI and the shear-vorticity ratio. Our parametric survey shows a power-law scaling between the turbulent stress (w tot) and the shear-vorticity ratio (gq ) as w tot∝g δ q with an index of δ ~ 0.5. The MRI-amplified magnetic energy has a similar scaling relative to the turbulent stress, while the Maxwell stress has a slightly smaller power-law index (~0.36). By modeling the effect of viscous heating rates from MRI turbulence, we show that the stronger magnetic fields, or the larger shear rates initially imposed, lead to higher dissipation rates. For a rapidly rotating PNS with a spin period in milliseconds and with strong magnetic fields of 1015 G, the energy dissipation rate is estimated to exceed 1051 erg s–1. Our results suggest that the conventional magnetohydrodynamic (MHD) mechanism of core-collapse supernovae is likely to be affected by MRI-driven turbulence, which we speculate, on the one hand, could harm the MHD-driven explosions due to the dissipation of the shear rotational energy at the PNS surface; or, on the other hand, its energy deposition might be potentially favorable for the working of the neutrino-heating mechanism.
机译:考虑到核塌陷超新星的应用,我们在局部剪切箱近似的框架内通过三维模拟研究了磁旋转不稳定性(MRI)的非线性特性。通过系统地改变代表新生初中子星(PNSs)的差旋转度的剪切速率,我们得出MRI维持的湍流应力与剪切涡度比之间的比例关系。我们的参数调查显示,湍流应力(w tot)与剪切涡度比(gq)之间的幂律标度为w totg gδq,其索引值为δ〜0.5。相对于湍流应力,MRI放大的磁能具有相似的缩放比例,而麦克斯韦应力的幂律指数稍小(〜0.36)。通过对MRI湍流中粘性加热速率的影响进行建模,我们表明,较强的磁场或最初施加的较大剪切速率会导致较高的耗散率。对于快速旋转的PNS,其自旋周期为毫秒,并且具有1015 G的强磁场,其能量耗散率估计超过1051 erg s-1。我们的研究结果表明,核塌陷超新星的常规磁流体动力学(MHD)机制很可能受到MRI驱动的湍流的影响,我们推测,一方面,由于剪切力的消散,这可能会损害MHD驱动的爆炸。 PNS表面的旋转能量;或者,另一方面,其能量沉积可能对中微子加热机制的工作有利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号