首页> 外文期刊>The Astrophysical journal >TURBULENT DISKS ARE NEVER STABLE: FRAGMENTATION AND TURBULENCE-PROMOTED PLANET FORMATION
【24h】

TURBULENT DISKS ARE NEVER STABLE: FRAGMENTATION AND TURBULENCE-PROMOTED PLANET FORMATION

机译:湍流盘从未稳定:碎片化和湍流推动的行星形成

获取原文
获取外文期刊封面目录资料

摘要

A fundamental assumption in our understanding of disks is that when the Toomre Q 1, the disk is stable against fragmentation into self-gravitating objects (and so cannot form planets via direct collapse). But if disks are turbulent, this neglects a spectrum of stochastic density fluctuations that can produce rare, high-density mass concentrations. Here, we use a recently developed analytic framework to predict the statistics of these fluctuations, i.e., the rate of fragmentation and mass spectrum of fragments formed in a turbulent Keplerian disk. Turbulent disks are never completely stable: we calculate the (always finite) probability of forming self-gravitating structures via stochastic turbulent density fluctuations in such disks. Modest sub-sonic turbulence above Mach number can produce a few stochastic fragmentation or "direct collapse" events over ~Myr timescales, even if Q 1 and cooling is slow (t cool t orbit). In transsonic turbulence this extends to Q ~ 100. We derive the true Q-criterion needed to suppress such events, which scales exponentially with Mach number. We specify to turbulence driven by magneto-rotational instability, convection, or spiral waves and derive equivalent criteria in terms of Q and the cooling time. Cooling times 50 t dyn may be required to completely suppress fragmentation. These gravo-turbulent events produce mass spectra peaked near ~(Q M disk/M *)2 M disk (rocky-to-giant planet masses, increasing with distance from the star). We apply this to protoplanetary disk models and show that even minimum-mass solar nebulae could experience stochastic collapse events, provided a source of turbulence.
机译:在我们对磁盘的理解中,一个基本的假设是,当Toomre Q 1时,磁盘是稳定的,不会破碎成自重的物体(因此无法通过直接坍塌形成行星)。但是,如果圆盘是湍流的,那么这会忽略一系列随机密度波动,这些波动会产生罕见的高密度质量浓度。在这里,我们使用最近开发的分析框架来预测这些波动的统计数据,即在湍动的Keplerian圆盘中形成的碎片的碎片率和质谱。湍流盘永远不会完全稳定:我们通过此类盘中的随机湍流密度波动来计算形成自重结构的(总是有限的)概率。即使Q 1和冷却速度很慢(t cool t轨道),超过Mach数的适度亚音速湍流也会在〜Myr时标上产生一些随机破碎或“直接塌陷”事件。在超音速湍流中,这个范围扩展到Q〜100。我们得出抑制此类事件所需的真实Q准则,该准则随马赫数成指数比例增长。我们指定由磁旋转不稳定性,对流或螺旋波驱动的湍流,并根据Q和冷却时间得出等效标准。可能需要50 t dyn的冷却时间才能完全抑制碎裂。这些重力湍流事件产生的质谱在〜(Q M盘/ M *)2 M盘附近达到峰值(从岩石到巨大的行星质量,随着与恒星距离的增加而增加)。我们将其应用于原行星盘模型,并证明即使是最低质量的太阳星云也可能经历随机的崩溃事件,从而提供了湍流的来源。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号