首页> 外文期刊>The Astrophysical journal >MAXIMALLY STAR-FORMING GALACTIC DISKS. II. VERTICALLY RESOLVED HYDRODYNAMIC SIMULATIONS OF STARBURST REGULATION
【24h】

MAXIMALLY STAR-FORMING GALACTIC DISKS. II. VERTICALLY RESOLVED HYDRODYNAMIC SIMULATIONS OF STARBURST REGULATION

机译:最大限度地形成星系的银河盘。二。垂直解析星暴调节的水动力模拟

获取原文
       

摘要

We explore the self-regulation of star formation using a large suite of high-resolution hydrodynamic simulations, focusing on molecule-dominated regions (galactic centers and [U]LIRGS) where feedback from star formation drives highly supersonic turbulence. In equilibrium, the total midplane pressure, dominated by turbulence, must balance the vertical weight of the interstellar medium. Under self-regulation, the momentum flux injected by feedback evolves until it matches the vertical weight. We test this flux balance in simulations spanning a wide range of parameters, including surface density Σ, momentum injected per stellar mass formed (p */m *), and angular velocity. The simulations are two-dimensional radial-vertical slices, and include both self-gravity and an external potential that helps to confine gas to the disk midplane. After the simulations reach a steady state in all relevant quantities, including the star formation rate ΣSFR, there is remarkably good agreement between the vertical weight, the turbulent pressure, and the momentum injection rate from supernovae. Gas velocity dispersions and disk thicknesses increase with p */m *. The efficiency of star formation per free-fall time at the midplane density, ff(n 0), is insensitive to the local conditions and to the star formation prescription in very dense gas. We measure ff(n 0) ~ 0.004-0.01, consistent with low and approximately constant efficiencies inferred from observations. For Σ (100-1000) M ☉ pc–2, we find ΣSFR (0.1-4) M ☉ kpc–2 yr–1, generally following a ΣSFR ∝ Σ2 relationship. The measured relationships agree very well with vertical equilibrium and with turbulent energy replenishment by feedback within a vertical crossing time. These results, along with the observed Σ-ΣSFR relation in high-density environments, provide strong evidence for the self-regulation of star formation.
机译:我们使用一大套高分辨率流体动力学模拟探索恒星形成的自我调节,重点研究分子占主导的区域(银河系中心和[U] LIRGS),在恒星形成的反馈驱动超音速湍流的区域。在平衡状态下,以湍流为主的总中平面压力必须平衡星际介质的垂直重量。在自我调节下,通过反馈注入的动量通量会不断发展直至与垂直权重匹配。我们在模拟中测试了通量平衡,该模拟涉及范围广泛的参数,包括表面密度Σ,每形成的恒星质量所注入的动量(p * / m *)和角速度。模拟是二维的径向-垂直切片,包括自重和有助于将气体限制在磁盘中平面的外部电势。模拟在所有相关量(包括恒星形成率ΣSFR)达到稳态后,垂直重量,湍流压力和超新星的动量注入率之间都具有显着的一致性。气体速度离散度和圆盘厚度随p * / m *的增加而增加。在中平面密度ff(n 0)下,每个自由落体时间的恒星形成效率对局部条件和非常稠密气体中的恒星形成处方都不敏感。我们测得ff(n 0)〜0.004-0.01,与从观察结果推断出的低效率和近似恒定效率一致。对于Σ(100-1000)M☉pc–2,我们发现ΣSFR(0.1-4)M☉kpc–2 yr-1,通常遵循ΣSFR∝Σ2关系。所测量的关系与垂直平衡以及在垂直穿越时间内通过反馈的湍流能量补充非常吻合。这些结果以及在高密度环境中观察到的Σ-SFR关系,为恒星形成的自我调节提供了有力的证据。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号