首页> 外文期刊>The Astrophysical journal >ON THE ENERGY SPECTRA OF GeV/TeV COSMIC RAY LEPTONS
【24h】

ON THE ENERGY SPECTRA OF GeV/TeV COSMIC RAY LEPTONS

机译:GeV / TeV宇宙射线轻子的能谱

获取原文
获取外文期刊封面目录资料

摘要

Recent observations of cosmic ray (CR) electrons from several instruments have revealed various degrees of deviation in the measured electron energy distribution from a simple power law, in the form of an excess around 0.1-1?TeV energies. An even more prominent deviation and excess has been observed in the fraction of CR positrons around 10 and 100?GeV energies. These observations have received considerable attention and many theoretical models have been proposed to explain them. The models rely on either dark matter annihilation/decay or specific nearby astrophysical sources, and involve several additional assumptions regarding dark matter distribution or particle acceleration. In this paper, we show that the observed excesses in the electron spectrum may be easily re-produced without invoking any unusual sources other than the general diffuse Galactic components of CRs. The model presented here assumes a power-law injection of electrons (and protons) by supernova remnants (SNRs), and evaluates their expected energy spectrum based on a simple kinetic equation describing the propagation of charged particles in the interstellar medium (ISM). The primary physical effect involved is the Klein-Nishina suppression of the electron cooling rate around TeV energies. With a very reasonable choice of the model parameters characterizing the local ISM, we can reproduce the most recent observations by the Fermi and HESS experiments. Interestingly, in our model the injection spectral index of CR electrons becomes comparable to, or even equal to that of CR protons. The Klein-Nishina effect may also affect the propagation of the secondary e ±?pairs, and therefore modify the CR positron-to-electron ratio. We have explored this possibility by considering two mechanisms for production of e ±?pairs within the Galaxy. The first is due to the decay of π±'s produced by interaction of CR nuclei with ambient protons. The second source discussed here is due to the annihilation of the diffuse Galactic γ-rays on the stellar photon field. We find that high positron fraction increasing with energy, as claimed by the PAMELA experiment, cannot be explained in our model with the conservative set of the model parameters. We are able, however, to reproduce the PAMELA (as well as the Fermi and HESS) results assuming high values of the starlight and interstellar gas densities, which would be more appropriate for vicinities of SNRs. A possible solution to this problem may be that CRs undergo most of their interactions near their sources due to the efficient trapping in the far upstream of supernova shocks by self-generated, CR-driven turbulence.
机译:最近从数种仪器中观察到的宇宙射线(CR)电子显示,所测量的电子能量分布与简单的幂律有不同程度的偏差,其形式为约0.1-1?TeV能量。在10和100?GeV能量附近的CR正电子中,观察到甚至更明显的偏差和过量。这些观察受到了相当大的关注,并提出了许多理论模型来解释它们。这些模型依赖于暗物质的/灭/衰变或附近特定的天体物理源,并涉及暗物质分布或粒子加速度的一些其他假设。在本文中,我们表明,观察到的电子光谱中的过量现象可以很容易地重现,而无需调用任何不寻常的来源(CR的一般扩散银河成分除外)。此处介绍的模型假设超新星残余(SNR)会以幂律方式注入电子(和质子),并基于描述带电粒子在星际介质(ISM)中传播的简单动力学方程式,评估其预期的能谱。涉及的主要物理效应是Klein-Nishina对TeV能量周围的电子冷却速率的抑制。通过非常合理地选择表征本地ISM的模型参数,我们可以重现费米和HESS实验的最新观察结果。有趣的是,在我们的模型中,CR电子的注入光谱指数变得与CR质子的光谱相当,甚至相等。 Klein-Nishina效应也可能影响次级e±π对的传播,因此会改变CR正电子对电子的比率。我们通过考虑在银河系中产生e±对的两种机制来探索这种可能性。首先是由于CR核与周围质子相互作用而产生的π±衰减。这里讨论的第二个源是由于恒星光子场上的弥漫性银河γ射线被the灭。我们发现,正如PAMELA实验所主张的那样,高正电子分数随能量的增加而无法在我们的模型中使用模型参数的保守集来解释。但是,如果星光和星际气体密度的值较高,则我们可以重现PAMELA(以及费米和HESS)的结果,这将更适合SNR附近。解决此问题的一种可能方法是,由于CR自身产生的湍流驱动的湍流将其有效地捕获在超新星激波的上游,因此CR在源附近经历了大部分相互作用。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号