...
首页> 外文期刊>The Astrophysical journal >SELF-CONVERGENCE OF RADIATIVELY COOLING CLUMPS IN THE INTERSTELLAR MEDIUM
【24h】

SELF-CONVERGENCE OF RADIATIVELY COOLING CLUMPS IN THE INTERSTELLAR MEDIUM

机译:星际介质中辐射冷却团的自收敛

获取原文

摘要

Isolated regions of higher density populate the interstellar medium (ISM) on all scales—from molecular clouds, to the star-forming regions known as cores, to heterogeneous ejecta found near planetary nebulae and supernova remnants. These clumps interact with winds and shocks from nearby energetic sources. Understanding the interactions of shocked clumps is vital to our understanding of the composition, morphology, and evolution of the ISM. The evolution of shocked clumps is well understood in the limiting "adiabatic" case where physical processes such as self-gravity, heat conduction, radiative cooling, and magnetic fields are ignored. In this paper, we address the issue of evolution and convergence when one of these processes—radiative cooling—is included. Numeric convergence studies demonstrate that the evolution of an adiabatic clump is well captured by roughly 100 cells per clump radius. The presence of radiative cooling, however, imposes limits on the problem due to the removal of thermal energy. Numerical studies which include radiative cooling typically adopt the 100-200 cells per clump radius resolution. In this paper, we present the results of a convergence study for radiatively cooling clumps undertaken over a broad range of resolutions, from 12 to 1536 cells per clump radius, employing adaptive mesh refinement (AMR) in a two-dimensional axisymmetric geometry (2.5 dimensions). We also provide a fully three-dimensional simulation, at 192 cells per clump radius, which supports our 2.5 dimensional results. We find no appreciable self-convergence at ~100 cells per clump radius as small-scale differences owing to increasingly resolving the cooling length have global effects. We therefore conclude that self-convergence is an insufficient criterion to apply on its own when addressing the question of sufficient resolution for radiatively cooled shocked clump simulations. We suggest the adoption of alternate criteria to support a statement of sufficient resolution, such as the demonstration of adequate resolution of the cooling layers behind shocks. We discuss associated refinement criteria for AMR codes.
机译:较高密度的孤立区域在星际介质(ISM)的各个方面都有分布-从分子云到形成恒星的恒星形成区,再到在行星状星云和超新星残骸附近发现的异质喷出物。这些团块与附近高能源的风和冲击相互作用。了解冲击团块的相互作用对于我们了解ISM的组成,形态和演化至关重要。在有限的“绝热”情况下,人们很容易理解冲击团块的演变,在这种情况下,诸如自重,热传导,辐射冷却和磁场等物理过程被忽略了。在本文中,当包含这些过程之一(辐射冷却)时,我们将解决演化和收敛的问题。数值收敛研究表明,绝热团簇的进化可被每个团簇半径大约100个细胞很好地捕获。然而,辐射冷却的存在由于去除了热能而对该问题施加了限制。包括辐射冷却在内的数值研究通常采用每团半径分辨率100-200个像元。在本文中,我们介绍了在二维轴对称几何结构(2.5维)中采用自适应网格细化(AMR)在较宽的分辨率范围(每团半径从12到1536个像元)上进行的辐射冷却团块的收敛性研究结果。 )。我们还提供了一个完整的三维模拟,每个簇半径为192个像元,这支持了我们的2.5维结果。我们发现在每束半径约100个单元中没有明显的自收敛,因为由于越来越多地确定冷却长度而导致的小规模差异具有全局影响。因此,我们得出结论,在解决辐射冷却的冲击团块模拟的足够分辨率的问题时,自收敛是不足以单独应用的标准。我们建议采用替代标准,以支持充分解决方案的声明,例如证明冲击后的冷却层具有适当解决方案。我们讨论了AMR代码的相关优化标准。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号