首页> 外文期刊>The Astrophysical journal >THE IMPACT OF INTERACTIONS, BARS, BULGES, AND ACTIVE GALACTIC NUCLEI ON STAR FORMATION EFFICIENCY IN LOCAL MASSIVE GALAXIES
【24h】

THE IMPACT OF INTERACTIONS, BARS, BULGES, AND ACTIVE GALACTIC NUCLEI ON STAR FORMATION EFFICIENCY IN LOCAL MASSIVE GALAXIES

机译:相互作用,条形,凸起和主动星系核对本地大规模星系形成恒星效率的影响

获取原文
       

摘要

Using atomic and molecular gas observations from the GASS and COLD GASS surveys and complementary optical/UV data from the Sloan Digital Sky Survey and the Galaxy Evolution Explorer, we investigate the nature of the variations in the molecular gas depletion time observed across the local massive galaxy population. The large and unbiased COLD GASS sample allows us for the first time to statistically assess the relative importance of galaxy interactions, bar instabilities, morphologies, and the presence of active galactic nuclei (AGNs) in regulating star formation efficiency. We find that both the H2 mass fraction and depletion time vary as a function of the distance of a galaxy from the main sequence traced by star-forming galaxies in the SFR-M * plane. The longest gas depletion times are found in below-main-sequence bulge-dominated galaxies (μ*?5 × 108 M ☉?kpc–2, C 2.6) that are either gas-poor (/M *?1.5%) or else on average less efficient by a factor of ~2 than disk-dominated galaxies at converting into stars any cold gas they may have. We find no link between the presence of AGNs and these long depletion times. In the regime where galaxies are disk-dominated and gas-rich, the galaxies undergoing mergers or showing signs of morphological disruptions have the shortest molecular gas depletion times, while those hosting strong stellar bars have only marginally higher global star formation efficiencies as compared to matched control samples. Our interpretation is that the molecular gas depletion time variations are caused by changes in the ratio between the gas mass traced by the CO(1-0) observations and the gas mass in high-density star-forming cores (as traced by observations of, e.g., HCN(1-0)). While interactions, mergers, and bar instabilities can locally increase pressure and raise the ratio of efficiently star-forming gas to CO-detected gas (therefore lowering the CO-based depletion time), massive bulges may prevent the formation of dense clumps by stabilizing gas disks against fragmentation, therefore producing the long depletion times. Building a sample representative of the local galaxy population with M *?1010 M ☉, we derive a global Kennicutt-Schmidt star formation relation of slope 1.18 ± 0.24 and observe structure within the scatter around this relation, with galaxies having low (high) stellar mass surface densities lying systematically above (below) the mean relation, suggesting that is not the only parameter driving the global star formation ability of a galaxy.
机译:使用来自GASS和COLD GASS调查的原子和分子气体观测结果以及Sloan Digital Sky Survey和Galaxy Evolution Explorer的补充光学/紫外线数据,我们研究了在整个局部大星系中观测到的分子气体消耗时间变化的性质。人口。大而无偏的COLD GASS样本使我们第一次可以统计地评估星系相互作用,条形不稳定性,形态以及活跃银河核(AGN)在调节恒星形成效率方面的相对重要性。我们发现,H2的质量分数和耗竭时间均随星系与SFR-M *平面中由恒星形成星系追踪的主序列的距离而变化。在低于主序的凸起为主的星系(μ*≥5×108 M?kpc–2,C> 2.6)中发现气体耗竭时间最长的都是贫气(/ M *≤1.5%) ),或者将其可能拥有的任何冷气体转化为恒星的效率平均要比盘状星系低约2倍。我们发现AGN的存在与这些耗竭时间长之间没有任何联系。在星系以圆盘为主且富含气体的星系中,经历合并或显示出形态破坏迹象的星系具有最短的分子气体消耗时间,而那些拥有强恒星棒的星系与相匹配的星系相比,其全球恒星形成效率仅略高一些。对照样品。我们的解释是,分子气体耗竭时间的变化是由CO(1-0)观测到的气体质量与高密度恒星形成核中的气体质量之比(如观测到的,例如HCN(1-0))。尽管相互作用,合并和条形不稳定性会局部增加压力并提高有效形成恒星的气体与被CO探测到的气体的比例(因此减少了基于CO的耗尽时间),但大的凸起可能会通过稳定气体来防止形成密集的团块磁盘不易碎裂,因此消耗时间长。建立一个表示M *?> 1010 M the的局部星系种群的样本,我们得出斜率为1.18±0.24的全局Kennicutt-Schmidt星形成关系,并观察围绕该关系的散点内的结构,其中星系具有低(高)恒星质量表面密度系统地位于均值关系之上(之下),这并不是驱动银河系整体恒星形成能力的唯一参数。
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号