首页> 外文期刊>The Astrophysical journal >INFRARED AND X-RAY SPECTROSCOPY OF THE Kes 75 SUPERNOVA REMNANT SHELL: CHARACTERIZING THE DUST AND GAS PROPERTIES
【24h】

INFRARED AND X-RAY SPECTROSCOPY OF THE Kes 75 SUPERNOVA REMNANT SHELL: CHARACTERIZING THE DUST AND GAS PROPERTIES

机译:Kes 75超新星遗留壳的红外和X射线光谱:表征粉尘和气体性质

获取原文
获取外文期刊封面目录资料

摘要

We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of ~1.5?keV, or with two thermal components with temperatures of 1.5 and 0.2?keV. Previous studies suggest that the hot component may originate from reverse-shocked supernova (SN) ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from SN ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and IR emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of ~140 K by a relatively dense, hot plasma that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 × 10–2 M ☉, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2?keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of density and filling factors of the clumpy medium swept up by the SNR.
机译:我们介绍了复合超新星遗迹(SNR)Kes 75(G29.7-0.3)中的深Chandra观测值和Spitzer空间望远镜的红外(IR)光谱。残余物由中央脉冲星云和南部明亮的部分壳组成,在无线电,红外和X射线波长下可见。 X射线的发射可以用温度为〜1.5?keV的单个热分量或温度为1.5和0.2?keV的两个热分量建模。先前的研究表明,高温成分可能源自反冲击超新星(SN)喷射。但是,我们的新分析结果没有明确的证据表明,SN喷射所期望的Si,S,Ar,Mg和Fe的丰度提高,也没有确定的SN凝结尘埃的红外光谱特征,因此有利于绕星或星际起源用于X射线和IR发射。外壳中的X射线和IR发射在空间上相关,这表明灰尘颗粒被X射线发射气体碰撞加热。外壳的红外光谱主要由来自尘埃的连续发射所致,几乎没有或根本没有线路发射。对红外光谱进行建模显示,灰尘被相对密集的热等离子体加热到约140 K,这也会产生热X射线发射分量。从IR发射推断出的密度明显高于从X射线模型推断出的密度,这表明该X射线发射气体的填充系数低。假设外壳没有发生重大的粉尘破坏,则温暖的粉尘成分的总质量至少为1.3×10–2 M☉。红外数据还表明,存在一个温度较低的附加等离子体成分,与0.2?keV气体成分一致。因此,我们的红外分析可对X射线发射的较冷成分进行独立验证。 X射线和IR发射的互补分析提供了由SNR扫掠的块状介质的密度和填充因子的定量估计。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号