...
首页> 外文期刊>The Astrophysical journal >RESONANCE BROADENING AND HEATING OF CHARGED PARTICLES IN MAGNETOHYDRODYNAMIC TURBULENCE
【24h】

RESONANCE BROADENING AND HEATING OF CHARGED PARTICLES IN MAGNETOHYDRODYNAMIC TURBULENCE

机译:磁流体动力湍流中带电粒子的共振扩散和加热

获取原文

摘要

The heating, acceleration, and pitch-angle scattering of charged particles by magnetohydrodynamic (MHD) turbulence are important in a wide range of astrophysical environments, including the solar wind, accreting black holes, and galaxy clusters. We simulate the interaction of high-gyrofrequency test particles with fully dynamical simulations of subsonic MHD turbulence, focusing on the parameter regime with β ~ 1, where β is the ratio of gas to magnetic pressure. We use the simulation results to calibrate analytical expressions for test particle velocity-space diffusion coefficients and provide simple fits that can be used in other work. The test particle velocity diffusion in our simulations is due to a combination of two processes: interactions between particles and magnetic compressions in the turbulence (as in linear transit-time damping; TTD) and what we refer to as Fermi Type-B (FTB) interactions, in which charged particles moving on field lines may be thought of as beads sliding along moving wires. We show that test particle heating rates are consistent with a TTD resonance that is broadened according to a decorrelation prescription that is Gaussian in time (but inconsistent with Lorentzian broadening due to an exponential decorrelation function, a prescription widely used in the literature). TTD dominates the heating for vs vA (e.g., electrons), where vs is the thermal speed of species s and vA is the Alfvén speed, while FTB dominates for vs vA (e.g., minor ions). Proton heating rates for β ~ 1 are comparable to the turbulent cascade rate. Finally, we show that velocity diffusion of collisionless, large gyrofrequency particles due to large-scale MHD turbulence does not produce a power-law distribution function.
机译:磁流体动力学(MHD)湍流对带电粒子的加热,加速和桨距角散射在各种天体环境中都很重要,包括太阳风,积淀的黑洞和星系团。我们以亚音速MHD湍流的完全动力学模拟来模拟高频频率测试粒子的相互作用,重点是β〜1的参数范围,其中β是气体与磁压之比。我们使用仿真结果来校准测试粒子速度-空间扩散系数的解析表达式,并提供可用于其他工作的简单拟合。我们模拟中的测试粒子速度扩散是由于两个过程的结合:粒子之间的相互作用和湍流中的磁压缩(如线性渡越时间阻尼; TTD)以及我们称为费米B型(FTB)的过程相互作用,其中带电粒子在磁力线上移动可能被认为是沿着移动导线滑动的磁珠。我们显示出测试粒子的加热速率与TTD共振一致,该TTD共振根据时间为高斯的去相关处方加宽(但由于指数去相关函数,该文献与洛伦兹加宽不一致,该文献广泛使用该处方)。 TTD主导了vs vA(例如电子)的加热,其中vs是物种s的热速度,而vA是Alfvén速度,而FTB主导了vs vA(例如次离子)。 β〜1的质子加热速率与湍流级联速率相当。最后,我们证明了由于大型MHD湍流而导致的无碰撞大陀螺频率粒子的速度扩散不会产生幂律分布函数。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号