...
首页> 外文期刊>The Astrophysical journal >DIFFUSE HARD X-RAY EMISSION IN STARBURST GALAXIES AS SYNCHROTRON FROM VERY HIGH ENERGY ELECTRONS
【24h】

DIFFUSE HARD X-RAY EMISSION IN STARBURST GALAXIES AS SYNCHROTRON FROM VERY HIGH ENERGY ELECTRONS

机译:来自高能电子的同步电子在星爆星系中扩散硬X射线

获取原文

摘要

The origin of the diffuse hard X-ray (2-10?keV) emission from starburst galaxies is a long-standing problem. We suggest that synchrotron emission of 10-100?TeV electrons and positrons (e ±) can contribute to this emission, because starbursts have strong magnetic fields. We consider three sources of e ± at these energies: (1) primary electrons directly accelerated by supernova remnants, (2) pionic secondary e ± created by inelastic collisions between cosmic ray (CR) protons and gas nuclei in the dense interstellar medium of starbursts, and (3) pair e ± produced between the interactions between 10 and 100?TeV γ-rays and the intense far-infrared (FIR) radiation fields of starbursts. We create one-zone steady-state models of the CR population in the Galactic center (R ≤ 112 pc), NGC?253, M82, and Arp?220's nuclei, assuming a power-law injection spectrum for electrons and protons. We consider different injection spectral slopes, magnetic field strengths, CR acceleration efficiencies, and diffusive escape times, and include advective escape, radiative cooling processes, and secondary and pair e ±. We compare these models to extant radio and GeV and?TeV γ-ray data for these starbursts, and calculate the diffuse synchrotron X-ray and inverse Compton (IC) luminosities of these starbursts in the models which satisfy multiwavelength constraints. If the primary electron spectrum extends to ~PeV energies and has a proton/electron injection ratio similar to the Galactic value, we find that synchrotron emission contributes 2%-20% of their unresolved, diffuse hard X-ray emission. However, there is great uncertainty in this conclusion because of the limited information on the CR electron spectrum at these high energies. IC emission is likewise a minority of the unresolved X-ray emission in these starbursts, from 0.1% in the Galactic center to 10% in Arp?220's nuclei, with the main uncertainty being the starbursts' magnetic field. We also model generic starbursts, including submillimeter galaxies, in the context of the FIR-X-ray relation, finding that anywhere between 0% and 16% of the total hard X-ray emission is synchrotron for different parameters, and up to 2% in the densest starbursts assuming an E –2.2 injection spectrum and a diffusive escape time of 10 Myr (E/3 GeV)–1/2 (h/100 pc). Neutrino observations by IceCube and?TeV γ-ray data from HESS, VERITAS, and CTA can further constrain the synchrotron X-ray emission of starbursts. Our models do not constrain the possibility of hard, second components of primary e ± from sources like pulsars in starbursts, which could enhance the synchrotron X-ray emission further.
机译:爆炸星系发出的漫射硬X射线(2-10?keV)的起源是一个长期存在的问题。我们建议,由于星爆具有强磁场,因此10-100?TeV电子和正电子(e±)的同步加速器发射可有助于这种发射。我们考虑了在这些能量下的e±的三个来源:(1)超新星残余物直接加速的一次电子;(2)宇宙射线(CR)质子与密集的星际星际介质中的气体核之间的非弹性碰撞产生的离子二次e±和(3)对e±在10和100?TeVγ射线之间的相互作用与星爆的强烈远红外(FIR)辐射场之间产生。假设电子和质子的幂律注入谱,我们在银河系中心(R≤112 pc),NGC?253,M82和Arp?220的原子核中建立CR种群的一区稳态模型。我们考虑了不同的注入光谱斜率,磁场强度,CR加速效率和扩散逸散时间,包括对流逸散,辐射冷却过程以及次级和成对e±。我们将这些模型与这些星爆的现有无线电和GeV和?TeVγ射线数据进行比较,并在满足多波长约束的模型中计算这些星爆的散射同步辐射X射线和逆康普顿(IC)光度。如果一次电子光谱扩展到〜PeV能量,并且质子/电子注入比与银河系数值相似,我们就会发现同步加速器发射占其未解析的漫射硬X射线发射的2%-20%。但是,由于在这些高能量下关于CR电子光谱的信息有限,因此该结论存在很大的不确定性。在这些星爆中,未解决的X射线发射中,IC发射同样占少数,从银河系中心的0.1%到Arp?220原子核的10%,主要不确定性是星爆的磁场。在FIR-X射线关系的背景下,我们还模拟了一般爆炸形(包括亚毫米星系),发现在不同参数下,总硬X射线发射的0%到16%之间的任何地方都是同步加速器,并且高达2%假设E –2.2注入光谱和10 Myr(E / 3 GeV)–1/2(h / 100 pc)的扩散逸出时间在最稠密的星爆中发生。 IceCube的中微子观测以及来自HESS,VERITAS和CTA的?TeVγ射线数据可以进一步限制星爆的同步加速器X射线发射。我们的模型不限制来自星爆中脉冲星等来源的主要e±的硬第二成分的可能性,这可能会进一步增强同步加速器X射线的发射。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号