...
首页> 外文期刊>The Astrophysical journal >CHROMIUM ISOTOPE SYSTEMATICS OF ACHONDRITES: CHRONOLOGY AND ISOTOPIC HETEROGENEITY OF THE INNER SOLAR SYSTEM BODIES
【24h】

CHROMIUM ISOTOPE SYSTEMATICS OF ACHONDRITES: CHRONOLOGY AND ISOTOPIC HETEROGENEITY OF THE INNER SOLAR SYSTEM BODIES

机译:铬的同位素同位素系统学:太阳系内体的年代学和同位素异质性

获取原文

摘要

The standard planetary formation models assume that primitive materials, such as carbonaceous chondrites, are the precursor materials of evolved planetesimals. Past chronological studies have revealed that planetesimals of several hundred kilometers in size, such as the Howardite-Eucrite-Diogenite (HED) parent body (Vesta) and angrite parent body, began their differentiation as early as ~3 million years of the solar system formation, and continued for at least several million years. However, the timescale of planetesimal formation in distinct regions of the inner solar system, as well as the isotopic characteristics of the reservoirs from which they evolved, remains unclear. Here we present the first report for the precise 53Mn-53Cr ages of monomict ureilites. Chemically separated phases from one monomict ureilite (NWA 766) yielded the Mn-Cr age of 4564.60 ± 0.67 Ma, identical within error to the oldest age preserved in other achondrites, such as angrites and eucrites. The 54Cr isotopic data for this and seven additional bulk ureilites show homogeneous ε54Cr of ~–0.9, a value distinct from other achondrites and chondrites. Using the ε54Cr signatures of Earth, Mars, and Vesta (HED), we noticed a linear decrease in the ε54Cr value with the heliocentric distance in the inner region of the solar system. If this trend can be extrapolated into the outer asteroid belt, the ε54Cr signatures of monomict ureilites will place the position of the ureilite parent body at ~2.8 AU. These observations imply that the differentiation of achondrite parent bodies began nearly simultaneously at ~4565 Ma in different regions of the inner solar system. The distinct ε54Cr value between ureilite and carbonaceous chondrite also implies that a genetic link commonly proposed between the two is unlikely.
机译:标准的行星地层模型假定原始材料(例如碳质球粒陨石)是演化的小行星的前体材料。过去的年代学研究表明,几百公里大小的小行星,如霍华德-欧克特-二元辉石(HED)母体(Vesta)和天使长母体,早在太阳系形成约三百万年时就开始分化。 ,并且至少持续了几百万年。但是,尚不清楚内部太阳系不同区域的小行星形成的时间尺度,以及它们从中演化出来的储层的同位素特征。在这里,我们提出了单分子尿素石的精确53Mn-53Cr年龄的第一份报告。从一种单分子尿素石(NWA 766)中化学分离的相产生的Mn-Cr年龄为4564.60±0.67 Ma,在误差范围内与保存在其他长晶石(如角铁和真石)中的最老年龄相同。此和另外7个块状尿素岩的54Cr同位素数据显示,ε54Cr的均质度约为〜-0.9,该值与其他软晶石和球粒陨石不同。使用地球,火星和维斯塔(HED)的ε54Cr特征,我们注意到ε54Cr值随太阳系内部区域的日心距线性减小。如果可以将这种趋势推断到外小行星带,则单分子尿素石的ε54Cr标记将把尿素石母体的位置定为〜2.8 AU。这些观察结果表明,在内部太阳系的不同区域,长晶石母体的分化几乎同时开始于〜4565 Ma。尿素石和碳质球粒陨石之间的ε54Cr值不同,这也暗示了两者之间通常不可能建立的遗传联系。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号