首页> 外文期刊>The Astrophysical journal >SPECTRAL ENERGY DISTRIBUTIONS OF YOUNG STARS IN IC 348: THE ROLE OF DISKS IN ANGULAR MOMENTUM EVOLUTION OF YOUNG, LOW-MASS STARS
【24h】

SPECTRAL ENERGY DISTRIBUTIONS OF YOUNG STARS IN IC 348: THE ROLE OF DISKS IN ANGULAR MOMENTUM EVOLUTION OF YOUNG, LOW-MASS STARS

机译:IC 348中小星星的光谱能量分布:盘在低质量小星星的角动量演化中的作用

获取原文
       

摘要

Theoretical work suggests that a young star's angular momentum content and rotation rate may be strongly influenced by magnetic interactions with its circumstellar disk. A generic prediction of these "disk-locking" theories is that a disk-locked star will be forced to co-rotate with the Keplerian angular velocity of the inner edge of the disk; that is, the disk's inner-truncation radius should equal its co-rotation radius. These theories have also been interpreted to suggest a gross correlation between young stars' rotation periods and the structural properties of their circumstellar disks, such that slowly rotating stars possess close-in disks that enforce the star's slow rotation, whereas rapidly rotating stars possess anemic or evacuated inner disks that are unable to brake the stars and instead the stars spin up as they contract. To test these expectations, we model the spectral energy distributions (SEDs) of 33 young stars in IC 348 with known rotation periods and infrared excesses indicating the presence of circumstellar disks. For each star, we match the observed SED, typically sampling 0.6-8.0 μm, to a grid of 200,000 pre-computed star+disk radiative transfer models, from which we infer the disk's inner-truncation radius. We then compare this truncation radius to the disk's co-rotation radius, calculated from the star's measured rotation period. We do not find obvious differences in the disk truncation radii of slow rotators versus rapid rotators. This holds true both at the level of whether close-in disk material is present at all, and in analyzing the precise location of the inner disk edge relative to the co-rotation radius among the subset of stars with close-in disk material. One interpretation is that disk locking is unimportant for the IC 348?stars in our sample. Alternatively, if disk locking does operate, then it must operate on both the slow and rapid rotators, potentially producing both spin-up and spin-down torques, and the transition from the disk-locked state to the disk-released state must occur more rapidly than the stellar contraction timescale.
机译:理论工作表明,一颗年轻恒星的角动量含量和自转速率可能受到与其星际盘磁相互作用的强烈影响。这些“磁盘锁定”理论的一般预测是,磁盘锁定的恒星将被迫与磁盘内边缘的开普勒角角速度共同旋转。也就是说,磁盘的内部截断半径应等于其同向旋转半径。这些理论还被解释为暗示了年轻恒星自转周期与其星际盘结构特性之间的总体相关性,因此,缓慢旋转的恒星拥有近距离盘,从而迫使恒星缓慢旋转,而快速旋转的恒星具有贫血或恒流。抽空的内部磁盘无法制动恒星,而恒星在收缩时会旋转。为了测试这些期望,我们对IC 348中33个年轻恒星的光谱能量分布(SED)进行了建模,并具有已知的自转周期和红外过量,表明存在星际盘。对于每颗恒星,我们将观察到的SED(通常为0.6-8.0μm采样)与200,000个预先计算的恒星+磁盘辐射传输模型的网格相匹配,由此可以推断出磁盘的内部截断半径。然后,我们将该截断半径与圆盘的同向旋转半径进行比较,后者根据恒星的实测旋转周期计算得出。我们没有发现慢速旋转器与快速旋转器的圆盘截断半径有明显差异。在完全不存在密闭盘材料的层面上,以及在分析密闭盘材料的恒星子集中,相对于同旋转半径的内盘边缘的精确位置方面,这都是正确的。一种解释是,磁盘锁定对于我们样本中的IC 348星并不重要。或者,如果磁盘锁定确实起作用,则它必须同时在慢速旋转器和快速旋转器上运行,从而可能同时产生旋转和旋转扭矩,并且从磁盘锁定状态到磁盘释放状态的过渡必须更多地发生比恒星收缩的时间尺度要快。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号