首页> 外文期刊>The Astrophysical journal >FORMATION OF COLLAPSING CORES IN SUBCRITICAL MAGNETIC CLOUDS: THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS WITH AMBIPOLAR DIFFUSION
【24h】

FORMATION OF COLLAPSING CORES IN SUBCRITICAL MAGNETIC CLOUDS: THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS WITH AMBIPOLAR DIFFUSION

机译:次亚磁性云团中塌陷心的形成:含两极扩散的三维磁流体动力学模拟

获取原文
           

摘要

We employ three-dimensional magnetohydrodynamic simulations including ambipolar diffusion to study the gravitationally driven fragmentation of subcritical molecular clouds, in which the gravitational fragmentation is stabilized as long as magnetic flux-freezing applies. The simulations show that the cores in an initially subcritical cloud generally develop gradually over an ambipolar diffusion time, which is about a few ×107yr in a typical molecular cloud. On the other hand, the formation of collapsing cores in subcritical clouds is accelerated by supersonic nonlinear flows. Our parameter study demonstrates that core formation occurs faster as the strength of the initial flow speed in the cloud increases. We found that the core formation time is roughly proportional to the inverse of the square root of the enhanced density created by the supersonic nonlinear flows. The density dependence is similar to that derived in quasistatically contracting magnetically supported clouds, although the core formation conditions are created by the nonlinear flows in our simulations. We have also found that the accelerated formation time is not strongly dependent on the initial strength of the magnetic field if the cloud is highly subcritical. Our simulation shows that the core formation time in our model subcritical clouds is several ×106 yr due to the presence of large-scale supersonic flows (~3 times sound speed). Once a collapsing core forms, the density, velocity, and magnetic field structure of the core do not strongly depend on the initial strength of the velocity fluctuation. The infall velocities of the cores are subsonic and the magnetic field lines show weak hourglass shapes.
机译:我们采用包括双极性扩散的三维磁流体动力学模拟来研究亚临界分子云的重力驱动碎裂,只要施加磁通量冻结,重力碎裂就会稳定。模拟表明,最初处于亚临界状态的云中的核通常会在双极性扩散时间内逐渐发展,在典型的分子云中约为×107yr。另一方面,超音速非线性流加速了亚临界云中塌陷核的形成。我们的参数研究表明,随着云层中初始流动速度的增加,岩心形成会更快。我们发现,岩心形成时间大致与超音速非线性流动产生的增强密度的平方根的倒数成比例。密度依赖性类似于在准静态收缩的磁性支撑云中得出的密度依赖性,尽管在我们的模拟中,岩心形成条件是由非线性流产生的。我们还发现,如果云是高度亚临界的,加速的形成时间并不强烈依赖于磁场的初始强度。我们的模拟表明,由于存在大规模的超音速流(声速的3倍),模型亚临界云中的岩心形成时间为数×106 yr。一旦形成坍塌的磁心,磁心的密度,速度和磁场结构就不会强烈依赖于速度波动的初始强度。铁心的进入速度为亚音速,磁场线显示出较弱的沙漏形状。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号