...
首页> 外文期刊>The Astrophysical journal >The Formation of Interstellar C2N Isomers in Circumstellar Envelopes of Carbon Stars: An Ab Initio Study
【24h】

The Formation of Interstellar C2N Isomers in Circumstellar Envelopes of Carbon Stars: An Ab Initio Study

机译:碳星绕星包络中星际C2N异构体的形成:从头算研究

获取原文

摘要

The reaction of carbon atoms in their 3Pj electronic ground state with hydrogen cyanide, HCN (X 1Σ+), is explored computationally to investigate the formation of hitherto undetected C2N isomers in the interstellar medium via a neutral-neutral reaction. Our ab initio calculations expose that the reaction has no entrance barrier and proceeds on the triplet surface via addition of the carbon atom to the π-bond, yielding a cyclic HC2N intermediate. This complex either decomposes to cyclic C2N plus atomic hydrogen or rearranges via ring opening to the HCNC or HCCN isomers. These molecules can fragment via atomic hydrogen ejection to the linear CCN (2Π) and CNC (2Πg) radicals. The formation of all three C2N isomers proceeds without any exit barrier, but the reactions to form CNC, CCN, and c-C2N are found to be strongly endothermic by 52.7, 59.0, and 99.6 kJ mol-1, respectively. Based on these investigations, the neutral-neutral reaction of atomic carbon with hydrogen cyanide cannot synthesize C2N isomers in cold molecular clouds, where average translation temperatures of the reactants are only 10-15 K. However, the physical conditions in circumstellar envelopes of, for example, IRC+10216, differ strongly; close to the photosphere of the central star, temperatures can reach 4000 K, and the elevated velocity of both reactants in the long tail of the Maxwell-Boltzmann distribution can overcome the reaction endothermicity to form at least the linear CNC and CCN isomers. Therefore, these environments represent ideal targets to search for hitherto undetected CNC (2Π) and CNC (2Πg) via either infrared or microwave spectroscopy.
机译:通过计算探索了碳原子处于3Pj电子基态与氰化氢HCN(X1Σ+)的反应,以通过中性-中性反应研究星际介质中迄今未发现的C2N异构体。我们的从头算算表明,该反应没有入口壁垒,并且通过将碳原子加到π键上而在三重态表面上进行,从而生成环状HC2N中间体。该配合物要么分解为环状C2N加原子氢,要么通过开环重排为HCNC或HCCN异构体。这些分子可以通过氢原子原子分裂成线性CCN(2Π)和CNC(2Πg)自由基。所有三种C2N异构体的形成都没有任何出口障碍,但是形成CNC,CCN和c-C2N的反应分别被52.7、59.0和99.6 kJ mol-1强烈吸热。根据这些研究,原子碳与氰化氢的中性-中性反应无法在冷的分子云中合成C2N异构体,在冷的分子云中,反应物的平均翻译温度仅为10-15K。但是,对于例如IRC + 10216,差异很大;靠近中心恒星的光球,温度可以达到4000 K,并且在Maxwell-Boltzmann分布的长尾中两种反应物的升高速度可以克服反应的吸热性,从而至少形成线性CNC和CCN异构体。因此,这些环境代表了理想的目标,可通过红外或微波光谱法搜索迄今未检测到的CNC(2Π)和CNC(2Πg)。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号