...
首页> 外文期刊>The Astrophysical journal >Self-similar Collapse of Magnetized Molecular Cloud Cores with Ambipolar Diffusion and the “Magnetic Flux Problem” in Star Formation
【24h】

Self-similar Collapse of Magnetized Molecular Cloud Cores with Ambipolar Diffusion and the “Magnetic Flux Problem” in Star Formation

机译:具有双极性扩散的磁化分子云核的自相似塌陷和恒星形成中的“磁通量问题”

获取原文
           

摘要

We investigate the dynamic collapse of magnetized singular isothermal spheres in the presence of ambipolar diffusion, using a self-similarity technique. The spherical geometry, a crucial idealization first introduced by Safier, McKee, & Stahler to study the evolution of magnetized clouds, is made possible by ignoring magnetic tension forces. We find that, in the limit of a complete coupling between magnetic fields and neutral matter, magnetized spheres collapse via an expansion-wave solution, as in the (nonmagnetized) singular isothermal case. The presence of ambipolar diffusion modifies the collapse in two interesting ways. First, it smooths out the kinky wave head into an expansion wave of continuous (or "C") type. Second, ambipolar diffusion allows magnetic fields to decouple from rapidly collapsing neutral matter at small radii near the central point mass, thereby reducing the amount of magnetic flux dragged into the origin. We obtain viable collapse solutions with various amounts of magnetic flux at the center, including special ones that have no central flux at all. In such special cases, the long-standing "magnetic flux problem" in star formation is completely resolved. Furthermore, we show that the decoupled magnetic flux drives a hydromagnetic accretion shock against the dynamically collapsing envelope, as suggested previously by Li & McKee. Depending on the degree of coupling between magnetic fields and neutral matter and the amount of magnetic flux released from the central compact object, the accretion shock (which modifies the flow dynamics significantly) could either be of purely C type or have an embedded J subshock.
机译:我们使用自相似技术研究了在双极性扩散存在下磁化的奇异等温球体的动态塌陷。球形几何形状是Safier,McKee和Stahler最初提出的用于研究磁化云的演化的一种至关重要的理想化方法,它可以通过忽略磁性张力来实现。我们发现,在磁场和中性物质之间完全耦合的极限下,磁化球体通过膨胀波解而崩溃,就像在(非磁化)奇异等温情况下一样。双极性扩散的存在以两种有趣的方式改变了坍塌。首先,它可以将扭结波头平滑成连续(或“ C”)型的膨胀波。其次,双极扩散使磁场与中心点附近的小半径处的迅速塌陷的中性物质解耦,从而减少了拖入原点的磁通量。我们获得了在中心处具有各种磁通量的可行的崩溃解,包括根本没有中心磁通的特殊解。在这种特殊情况下,恒星形成中长期存在的“磁通量问题”得到了彻底解决。此外,我们还表明,如Li&McKee先前所建议的那样,解耦的磁通量会针对动态塌陷的包膜驱动水磁积聚激波。根据磁场与中性物质之间的耦合程度以及从中央紧凑物体释放的磁通量,吸积激波(会显着改变流动动力学)可能是纯C型的,也可能是嵌有J型的子冲击。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号