...
首页> 外文期刊>The Astrophysical journal >ERRATUM: “H2 FORMATION ON GRAIN SURFACES” (2004, ApJ, 604, 222)
【24h】

ERRATUM: “H2 FORMATION ON GRAIN SURFACES” (2004, ApJ, 604, 222)

机译:勘误表:“粮食表面上的H2形成”(2004年,ApJ,604,222)

获取原文

摘要

As noted by Bai & Goodman (2009), the equations for the transmission coefficients to go from a site i to a site j in Cazaux & Tielens (2004) erroneously omitted a key factor and also contained a typo. The correct equations are These equations differ from Equations (1) and (2) of the original paper in the additional factor , which is the ratio of the transmitted over the incident wave numbers, with a change of variable in order to define the energy E as being zero at the bottom of the potential well i (e.g., for T pc, the energy of the atom is defined from the physisorbed site). The relevant energies Bi , Bj , and Bij are summarized in Table 1 where—compared to the original paper—a small typo in the expression for the Bij has been corrected as well. Note that Bij is negative with these definitions and the omitted factor can greatly increase the values of the transmission coefficient for an H atom to go from a physisorbed site to a chemisorbed site. As a result, the probability for a physisorbed H atom to become chemisorbed increases. By the same token, the H2 formation efficiency will also increase. Using the parameters for the potential energy curves as described in Figure 15 of Cazaux & Tielens (2004), Figure 1 shows the corrected efficiencies for H2 formation on olivine and carbonaceous surfaces. For grain temperatures higher than 25 K, these efficiencies are ~3.5 times higher than without the correction. For lower temperatures, where H2 formation from physisorbed H atoms dominates, the efficiencies remain unchanged. The general expressions for the H2 formation efficiency obtained in Cazaux & Tielens (2002, Equation (9)) and Cazaux & Tielens (2004, Equation (19)) remain valid. However, the expression for αpc is calculated from the transmission coefficients that were previously underestimated. Therefore, the corrected expression for αpc is where the first term is the mobility through tunneling and the second term through thermal hopping. In the original paper, the tunneling term was not taken into account because tunneling was only important at low dust temperatures and, for those conditions, direct recombination of physisorbed atoms dominates H2 formation. With the corrected expression, this term has to be taken into account.
机译:正如Bai&Goodman(2009)所指出的那样,Cazaux&Tielens(2004)中从i点到j点的传输系数方程错误地省略了一个关键因素,并且还包含一个错字。正确的方程式是这些方程式与原始纸张的方程式(1)和(2)的不同之处在于附加系数,该系数是透射波与入射波数的比率,并且具有变量变化以定义能量E如在势阱i的底部为零(例如,对于T pc,原子的能量是从物理吸附位点定义的)。表1总结了相关能量Bi,Bj和Bij,与原始论文相比,Bij表达式中的一个小错字也已得到纠正。注意,对于这些定义,Bij为负,并且省略的因子可以极大地增加H原子从物理吸附位点到化学吸附位点的透射系数值。结果,物理吸附的H原子被化学吸附的可能性增加。同样,氢气的形成效率也将提高。使用Cazaux和Tielens(2004)的图15中所述的势能曲线参数,图1显示了橄榄石和碳质表面上H2形成的校正效率。对于高于25 K的晶粒温度,这些效率是未经校正的〜3.5倍。对于较低的温度,其中由物理吸附的H原子形成H2占主导地位,效率保持不变。 Cazaux&Tielens(2002,公式(9))和Cazaux&Tielens(2004,公式(19))中获得的H2形成效率的一般表达式仍然有效。但是,αpc的表达式是根据先前被低估的透射系数来计算的。因此,αpc的校正表达式是:第一项是通过隧穿的迁移率,第二项是通过热跳变的迁移率。在原始论文中,未考虑隧穿项,因为隧穿仅在低粉尘温度下很重要,并且在那些条件下,物理吸附原子的直接重组主导了H2的形成。使用更正的表达式时,必须考虑该术语。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号