首页> 外文期刊>The Astrophysical journal >GHRS Observations of Cool, Low-Gravity Stars. V. The Outer Atmosphere and Wind of the Nearby K Supergiant λ Velorum*
【24h】

GHRS Observations of Cool, Low-Gravity Stars. V. The Outer Atmosphere and Wind of the Nearby K Supergiant λ Velorum*

机译:GHRS观测的低重力低恒星。 V.附近K超巨星λVelorum的外部大气和风*

获取原文
           

摘要

UV spectra of λ Velorum taken with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope are used to probe the structure of the outer atmospheric layers and wind and to estimate the mass-loss rate from this K5 Ib-II supergiant. VLA radio observations at λ = 3.6 cm are used to obtain an independent check on the wind velocity and mass-loss rate inferred from the UV observations. Parameters of the chromospheric structure are estimated from measurements of UV line widths, positions, and fluxes and from the UV continuum flux distribution. The ratios of optically thin C II] emission lines indicate a mean chromospheric electron density of log Ne ≈ 8.9 ± 0.2 cm-3. The profiles of these lines indicate a chromospheric turbulence (v0 ≈ 25-36 km s-1), which greatly exceeds that seen in either the photosphere or wind. The centroids of optically thin emission lines of Fe II and of the emission wings of self-reversed Fe II lines indicate that they are formed in plasma approximately at rest with respect to the photosphere of the star. This suggests that the acceleration of the wind occurs above the chromospheric regions in which these emission line photons are created. The UV continuum detected by the GHRS clearly traces the mean flux-formation temperature as it increases with height in the chromosphere from a well-defined temperature minimum of 3200 K up to about 4600 K. Emission seen in lines of C III] and Si III] provides evidence of material at higher than chromospheric temperatures in the outer atmosphere of this noncoronal star. The photon-scattering wind produces self-reversals in the strong chromospheric emission lines, which allow us to probe the velocity field of the wind. The velocities to which these self-absorptions extend increase with intrinsic line strength, and thus height in the wind, and therefore directly map the wind acceleration. The width and shape of these self-absorptions reflect a wind turbulence of ≈9-21 km s-1. We further characterize the wind by comparing the observations with synthetic profiles generated with the Lamers et al. Sobolev with Exact Integration (SEI) radiative transfer code, assuming simple models of the outer atmospheric structure. These comparisons indicate that the wind in 1994 can be described by a model with a wind acceleration parameter β ~ 0.9, a terminal velocity of 29-33 km s-1, and a mass-loss rate ~ 3 × 10-9 M☉ yr-1. Modeling of the 3.6 cm radio flux observed in 1997 suggests a more slowly accelerating wind (higher β) and/or a higher mass-loss rate than inferred from the UV line profiles. These differences may be due to temporal variations in the wind or from limitations in one or both of the models. The discrepancy is currently under investigation.
机译:哈勃太空望远镜用戈达德高分辨率光谱仪(GHRS)拍摄的λVelorum紫外光谱用于探测外部大气层和风的结构,并根据该K5 Ib-II超巨星估算质量损失率。 λ= 3.6 cm处的VLA无线电观测用于对从UV观测得出的风速和质量损失率进行独立检查。色谱层结构的参数是根据UV线宽,位置和通量的测量值以及UV连续谱通量分布估算的。光学上稀薄的C II]发射线的比率表示平均色球电子密度为log Ne≈8.9±0.2 cm-3。这些线的轮廓指示了色球层湍流(v0≈25-36 km s-1),大大超过了在光球或风中看到的湍流。 Fe II光学上较细的发射线的质心和Fe II自反转的发射翼的质心表明,它们在等离子中相对于恒星的光层处于静止状态。这表明风的加速发生在产生这些发射线光子的色球层区域的上方。 GHRS检测到的紫外线连续谱清楚地追踪了平均通量形成温度,因为它随着色球层中高度的增加而从明确定义的最低温度3200 K升高到约4600K。在C III]和Si III线中观察到的发射]提供了该非日冕恒星外部大气中高于色球温度的物质的证据。光子散射风在强的色球层发射线上产生自反转,这使我们能够探测风的速度场。这些自吸收作用所延伸的速度随固有线强度而增加,并随风的高度而增加,因此直接映射风的加速度。这些自吸收的宽度和形状反映了≈9-21km s-1的风湍流。通过将观测结果与Lamers等人生成的合成剖面进行比较,我们进一步表征了风的特征。 Sobolev具有精确积分(SEI)辐射传递代码,假设外部大气结构的简单模型。这些比较表明,可以用以下模型描述1994年的风:风加速参数β〜0.9,终极速度为29-33 km s-1,质量损失率为〜3×10-9M☉yr -1。对1997年观测到的3.6厘米无线电通量的建模表明,与从UV线剖面推断出的风速相比,风速更慢(β值更高)和/或质量损失率更高。这些差异可能是由于风的时间变化,或是由于一个或两个模型的局限性。差异目前正在调查中。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号