...
首页> 外文期刊>The Astrophysical journal >An Unusual Burst from Soft Gamma Repeater SGR 1900+14: Comparisons with Giant Flares and Implications for the Magnetar Model
【24h】

An Unusual Burst from Soft Gamma Repeater SGR 1900+14: Comparisons with Giant Flares and Implications for the Magnetar Model

机译:软伽玛中继器SGR 1900 + 14的异常爆发:与巨大耀斑的比较及其对电磁模型的影响

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The soft gamma-ray repeater SGR?1900+14 entered a remarkable phase of activity during the summer of 1998. This activity peaked on 1998 August 27, when a giant periodic γ-ray flare resembling the famous 1979 March 5 event from SGR 0526-66 was recorded. Two days later (August 29), a strong, bright burst was detected simultaneously with the Rossi X-Ray Timing Explorer (RXTE) and the Burst and Transient Source Experiment (BATSE). This event reveals several similarities to the giant flares of August 27 and March 5 and shows a number of unique features not previously seen in SGR bursts. Unlike typically short SGR bursts (duration ~0.1 s), this event exhibits a 3.5 s burst peak that was preceded by an extended (~1 s) complex precursor, and followed by a long (~103 s) pulsating tail modulated at the 5.16 s stellar rotation period. Spectral analysis shows a striking distinction between the spectral behavior of the precursor, main peak, and long tail. While the spectrum is uniform during the peak, a significant hard-to-soft spectral evolution is detected in both the precursor and tail emissions. Temporal behavior shows a sharp rise (~10 ms) at the precursor onset, a rapid cutoff (~17 ms) at the end of the burst peak, and a gradual decay (~17 minutes) of the pulsating tail. The tail pulsations show a simple pulse profile that did not evolve with time. The contrasted spectral and temporal signatures of the event suggest that the precursor, main peak, and extended tail are produced by different physical mechanisms, and that the observed tail represents a new emission component from SGRs. We discuss these features and their implications in the context of the magnetar model. The bright 3.5 s component is consistent with a very hot (kT ~ 1 MeV) trapped fireball, and the precursor with magnetospheric emission in which the radiating particles are heated more continuously. Less than 1% of the fireball energy will be conducted into the exposed surface of the neutron star, thereby dissociating heavy elements and even helium, and inducing rapid transformations between neutrons and protons. The extended "afterglow" tail of the August 29 burst is consistent with a cooling hot spot of small area (~13 km2), and indicates that the energy release in an SGR burst is strongly localized.
机译:软伽玛射线中继器SGR?1900 + 14在1998年夏季进入了活跃的阶段。此活跃在1998年8月27日达到顶峰,当时巨大的周期性γ射线耀斑类似于著名的1979年3月5日SGR 0526-记录了66。两天后(8月29日),在使用Rossi X射线定时资源管理器(RXTE)和突发和瞬态源实验(BATSE)的同时,检测到强烈的明亮突发。该事件揭示了与8月27日和3月5日的巨大耀斑的相似之处,并显示了许多以前在SGR爆发中未曾见过的独特特征。与通常的短SGR爆发(持续时间〜0.1 s)不同,此事件显示3.5 s的爆发峰值,此峰值之前有一个扩展的(〜1 s)复杂前体,然后是一个较长的(〜103 s)脉动尾巴,调制为5.16。恒星旋转周期。光谱分析显示了前体,主峰和长尾巴的光谱行为之间的显着区别。尽管在峰期间光谱是均匀的,但在前体和尾部发射中都检测到了明显的从软到软的光谱演变。时间行为在前兆开始时显示急剧上升(〜10 ms),在爆发峰结束时迅速截止(〜17 ms),并且脉动尾部逐渐衰减(〜17分钟)。尾部搏动显示出简单的脉冲轮廓,不会随时间变化。该事件的频谱和时间特征对比表明,前体,主峰和延伸的尾巴是由不同的物理机制产生的,并且观察到的尾巴代表了SGR的新发射成分。我们在磁星模型的背景下讨论这些特征及其含义。明亮的3.5 s分量与非常热的(kT〜1 MeV)被困火球以及具有磁层发射的前驱体一致,其中辐射粒子被更连续地加热。不到1%的火球能量将被传导到中子星的暴露表面,从而使重元素甚至氦解离,并引起中子与质子之间的快速转变。 8月29日爆发的延长的“余辉”尾巴与小面积(约13 km2)的冷却热点一致,并表明SGR爆发中的能量释放强烈地局部化了。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号