...
首页> 外文期刊>The Astrophysical journal >Early Photon-Shock Interaction in a Stellar Wind: A Sub-GeV Photon Flash and High-Energy Neutrino Emission from Long Gamma-Ray Bursts
【24h】

Early Photon-Shock Interaction in a Stellar Wind: A Sub-GeV Photon Flash and High-Energy Neutrino Emission from Long Gamma-Ray Bursts

机译:恒星风中的早期光子-冲击相互作用:长伽马射线爆发的亚GeV光子闪光和高能中微子发射。

获取原文

摘要

For gamma-ray bursts (GRBs) born in a stellar wind, as the reverse shock crosses the ejecta, usually the shocked regions are still precipitated by the prompt MeV γ-ray emission. Because of the tight overlapping of the MeV photon flow with the shocked regions, the optical depth for the GeV photons produced in the shocks is very large. These high-energy photons are absorbed by the MeV photon flow and generate relativistic e± pairs. These pairs rescatter the soft X-ray photons from the forward shock as well as the prompt γ-ray photons and power detectable high-energy emission, a significant part of which is in the sub-GeV energy range. Since the total energy contained in the forward shock region and the reverse shock region are comparable, the predicted sub-GeV emission is independent of whether the GRB ejecta are magnetized (in which case the reverse shock inverse Compton and synchrotron self-Compton emission is suppressed). As a result, a sub-GeV flash is a generic signature for the GRB wind model, and it should be usually detectable by the future Gamma-Ray Large Area Space Telescope (GLAST). Overlapping also influences neutrino emission. Besides the 1015-1017 eV neutrino emission powered by the interaction of the shock-accelerated protons with the synchrotron photons in both the forward and reverse shock regions, there comes another 1014 eV neutrino emission component powered by protons interacting with the MeV photon flow. This last component has a similar spectrum to that generated in the internal shock phase, but the typical energy is slightly lower.
机译:对于恒星风中产生的伽马射线暴(GRB),当反向冲击穿过喷头时,通常,迅速的MeVγ射线发射仍会使受激区域沉淀。由于MeV光子流与受激区域的紧密重叠,因此在激波中产生的GeV光子的光学深度非常大。这些高能光子被MeV光子流吸收并产生相对论e±对。这些对将软X射线光子从正向冲击中散射开来,并从迅速的γ射线光子和功率可检测的高能量发射中散射出来,其中很大一部分处于次GeV能量范围内。由于正激波区域和反激波区域中包含的总能量是可比较的,因此预测的副GeV发射与GRB喷射是否被磁化无关(在这种情况下,反激康普顿和同步加速器自康普顿发射被抑制了) )。因此,次GeV闪光是GRB风模型的通用特征,通常应由未来的伽马射线大面积空间望远镜(GLAST)探测到。重叠也影响中微子的发射。除了在正向和反向激波区域中由激振质子与同步加速器光子相互作用驱动的1015-1017 eV中微子发射外,还有由质子与MeV光子流相互作用的另一个1014 eV中微子发射分量。最后一个成分的光谱与内部冲击阶段产生的光谱相似,但典型能量略低。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号