...
首页> 外文期刊>The Astrophysical journal >Solar Flare Geometries. II. The Volume Fractal Dimension
【24h】

Solar Flare Geometries. II. The Volume Fractal Dimension

机译:太阳耀斑的几何形状。二。体积分形维数

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Based on the area fractal dimension D2 of solar flares measured in Paper I, we carry out modeling of the three-dimensional (3D) flare volume here and derive an analytical relation between the volume fractal scaling V(L) ∝ LD3 and the area fractal scaling A(L) ∝ LD2. The 3D volume model captures a flare arcade with a variable number of flare loops; its fractal structure is not isotropic, but consists of aligned one-dimensional substructures. The geometry of the arcade model has three free parameters and makes some simplifying assumptions, such as semicircular loops, east-west orientation, location near the equator, and no magnetic shear. The analytical model predicts the scaling of the area filling factor qA(nloop) and volumetric filling factor qV(nloop) as a function of the number of loops nloop, and allows one to predict the volume filling factor qV(qA) and volume fractal dimension D3(D2) from the observationally measured parameters qA and D2. We also corroborate the analytical model with numerical simulations. We apply this fractal model to the 20 flares analyzed in Paper I and find maximum volume filling factors with a median range of qV ≈ 0.03–0.08 (assuming solid filling for loop widths of 1 Mm). The fractal nature of the flare volume has important consequences for correcting electron densities determined from flare volume emission measures and density-dependent physical quantities, such as the thermal energy or radiative cooling time. The fractal scaling has also far-reaching consequences for frequency distributions and scaling laws of solar and stellar flares.
机译:基于论文I中测量的太阳耀斑的分形维数D2,我们在此处对三维(3D)耀斑的体积进行建模,并得出体积分形标度V(L)∝ LD3与面积分形之间的解析关系。缩放A(L)∝ LD2。 3D体积模型捕获带有可变数量火炬环的火炬拱廊;它的分形结构不是各向同性的,而是由对齐的一维子结构组成。街机模型的几何形状具有三个自由参数,并进行了一些简化的假设,例如半圆环,东西向,赤道附近的位置以及无磁切变。该分析模型可预测面积填充因子qA(nloop)和体积填充因子qV(nloop)随循环数nloop的变化,并允许预测体积填充因子qV(qA)和体积分形维数根据观测到的参数qA和D2得出D3(D2)。我们还通过数值模拟来证实分析模型。我们将此分形模型应用于论文I中分析的20个火炬,并找到最大体积填充因子,其中值范围为qV≈0.03-0.08(假设环路宽度为1 Mm的实心填充)。火炬体积的分形性质对于校正由火炬体积发射量度和密度相关的物理量(例如热能或辐射冷却时间)确定的电子密度具有重要意义。分形缩放对太阳和恒星耀斑的频率分布和缩放定律也有深远的影响。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号