...
首页> 外文期刊>The Astrophysical journal >Angular Radii of Stars via Microlensing
【24h】

Angular Radii of Stars via Microlensing

机译:通过微透镜观察星的角半径

获取原文
   

获取外文期刊封面封底 >>

       

摘要

We outline a method by which the angular radii of giant and main-sequence stars located in the Galactic bulge can be measured to a few percent accuracy. The method combines comprehensive ground-based photometry of caustic-crossing bulge microlensing events, with a handful of precise (~10 μas) astrometric measurements of the lensed star during the event, to measure the angular radius of the source, θ*. Dense photometric coverage of one caustic crossing yields the crossing timescale Δt. Less frequent coverage of the entire event yields the Einstein timescale tE and the angle of source trajectory with respect to the caustic. The photometric light-curve solution predicts the motion of the source centroid up to an orientation on the sky and overall scale. A few precise astrometric measurements therefore yield θE, the angular Einstein ring radius. Then the angular radius of the source is obtained by θ* = θE(Δt/tE) sin . We argue that the parameters tE, Δt, , and θE, and therefore θ*, should all be measurable to a few percent accuracy for Galactic bulge giant stars using ground-based photometry from a network of small (1 m class) telescopes, combined with astrometric observations with a precision of ~10 μas to measure θE. We find that a factor of ~50 times fewer photons are required to measure θE to a given precision for binary lens events than for single-lens events. Adopting parameters appropriate to the Space Interferometry Mission (SIM), we find that ~7 minutes of SIM time is required to measure θE to ~5% accuracy for giant sources in the bulge. For main-sequence sources, θE can be measured to ~15% accuracy in ~1.4 hr. Thus, with access to a network of 1 m class telescopes, combined with 10 hr of SIM time, it should be possible to measure θ* to 5% for ~80 giant stars, or to 15% for roughly seven main-sequence stars. We also discuss methods by which the distances and spectral types of the source stars can be measured. A by-product of such a campaign is a significant sample of precise binary lens mass measurements.
机译:我们概述了一种方法,通过该方法可以测量位于银河凸起中的巨型和主要序列恒星的角半径,使其精度达到百分之几。该方法结合了苛刻交叉凸起微透镜事件的综合地面光度法和事件期间对透镜状恒星的少量精确(〜10μas)天文测量,以测量源的角半径θ*。一个苛性交叉的密集光度覆盖会产生交叉时间尺度Δt。不太频繁地覆盖整个事件会产生爱因斯坦时间标度tE和源轨迹相对于苛性碱的角度。光度学光曲线解决方案可预测源质心的运动,直到天空和整个比例尺上的方向。因此,一些精确的天文测量会得出爱因斯坦角环半径θE。然后,通过θ* =θE(Δt/ tE)sin来获得源的角半径。我们认为,使用小型(1 m级)望远镜网络的地面光度法,对于银河膨胀巨星,参数tE,Δt,θE和θ*应该都可以测量到百分之几的精度可以用〜10μas的天文观测数据来测量θE。我们发现,对于给定的精度,对二元透镜事件而言,测量θE所需的光子比单透镜事件少约50倍。通过采用适合于空间干涉测量任务(SIM)的参数,我们发现,将隆起中的巨大源头的θE测量到〜5%的精度需要约7分钟的SIM时间。对于主序列源,可以在约1.4小时内将θE测量到约15%的精度。因此,通过访问具有1 m级望远镜的网络并结合10个小时的SIM时间,应该有可能将θ*测量为大约80个巨星的5%或将大约7个主序星的15%的测量。我们还将讨论可以用来测量源恒星的距离和光谱类型的方法。此类活动的副产品是精确的二元镜质量测量的重要样本。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号