...
首页> 外文期刊>The Astrophysical journal >Heating and Nonthermal Particle Acceleration in Relativistic, Transverse Magnetosonic Shock Waves in Proton-Electron-Positron Plasmas
【24h】

Heating and Nonthermal Particle Acceleration in Relativistic, Transverse Magnetosonic Shock Waves in Proton-Electron-Positron Plasmas

机译:质子-电子-正电子等离子体中相对论,横向磁声冲击波中的加热和非热粒子加速

获取原文
   

获取外文期刊封面封底 >>

       

摘要

We report the results of one-dimensional particle-in-cell simulations of magnetized ultrarelativistic shock waves in proton-electron-positron plasmas. Relativistic cyclotron instability, as the incoming particles encounter the increasing magnetic field within the shock front provides the basic plasma heating mechanism. The major new results come from simulations with mass ratio mp/m± = 100. When the protons provide a sufficiently large fraction of the upstream flow energy density (including particle kinetic energy and Poynting flux), a substantial fraction of the shock heating goes into the formation of suprathermal power-law spectra of e-e+. Cyclotron absorption by the pairs of the high harmonic ion cyclotron waves, emitted by the protons, provides the nonthermal acceleration mechanism. When the proton fraction is small (pair plasma almost charge-symmetric), the e- and e+ have approximately equal amounts of nonthermal heating. At the lower range of our simulations with mass ratio 100, when the ions contribute 56% of the upstream flow energy flux, the pairs' nonthermal acceleration efficiency by energy is about 1%, increasing to 5% as the ions' energy fraction increases to 72%. When the fraction of upstream flow energy in the ions rises to 84%, the efficiency of nonthermal acceleration of the pairs reaches 30%: the e+ receive most of the nonthermal power and the nonthermal spectra harden. We suggest that the varying power-law spectra observed in synchrotron sources that may be powered by magnetized winds and jets might reflect the correlation of the proton-to-pair content enforced by the underlying electrodynamics of these sources' outflows, and that the observed correlation between the X-ray spectra of rotation-powered pulsars with the X-ray spectra of their nebulae might reflect the same correlation.
机译:我们报告质子电子-正电子等离子体中的磁化的超相对论冲击波的一维粒子在细胞模拟的结果。相对论回旋加速器的不稳定性,因为进入的粒子在激波前部遇到不断增加的磁场,提供了基本的等离子体加热机制。主要的新结果来自质量比为mp / m±= 100的模拟。当质子提供足够大比例的上游流动能量密度(包括粒子动能和Poynting通量)时,很大一部分冲击加热将进入e-e +的超热幂律谱的形成。质子发射的成对的高谐波离子回旋加速器对回旋加速器的吸收提供了非热加速机制。当质子分数较小时(成对等离子体几乎是电荷对称的),e-和e +具有大约相等的非热加热量。在质量比为100的模拟的较低范围内,当离子贡献了上游流动能量通量的56%时,两对离子的非热加速效率约为1%,随着离子的能量分数增加到5%,增加到5%。 72%。当离子中上游流动能量的比例上升到84%时,这些对的非热加速效率达到30%:e +接收大部分非热能,并且非热光谱变硬。我们建议,在同步加速器源中观察到的变化的幂律谱可能由磁化的风和射流提供动力,这可能反映了这些源流出物的潜在电动力学强制执行的质子对含量的相关性,并且观察到的相关性旋转脉冲星的X射线光谱与其星云的X射线光谱之间的反射可能反映相同的相关性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号